![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcies | Structured version Visualization version GIF version |
Description: A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 14-Mar-2019.) |
Ref | Expression |
---|---|
sbcies.a | ⊢ 𝐴 = (𝐸‘𝑊) |
sbcies.1 | ⊢ (𝑎 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbcies | ⊢ (𝑤 = 𝑊 → ([(𝐸‘𝑤) / 𝑎]𝜓 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvexd 6241 | . 2 ⊢ (𝑤 = 𝑊 → (𝐸‘𝑤) ∈ V) | |
2 | simpr 476 | . . . . 5 ⊢ ((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) → 𝑎 = (𝐸‘𝑤)) | |
3 | fveq2 6229 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (𝐸‘𝑤) = (𝐸‘𝑊)) | |
4 | sbcies.a | . . . . . . 7 ⊢ 𝐴 = (𝐸‘𝑊) | |
5 | 3, 4 | syl6reqr 2704 | . . . . . 6 ⊢ (𝑤 = 𝑊 → 𝐴 = (𝐸‘𝑤)) |
6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) → 𝐴 = (𝐸‘𝑤)) |
7 | 2, 6 | eqtr4d 2688 | . . . 4 ⊢ ((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) → 𝑎 = 𝐴) |
8 | sbcies.1 | . . . 4 ⊢ (𝑎 = 𝐴 → (𝜑 ↔ 𝜓)) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ ((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) → (𝜑 ↔ 𝜓)) |
10 | 9 | bicomd 213 | . 2 ⊢ ((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) → (𝜓 ↔ 𝜑)) |
11 | 1, 10 | sbcied 3505 | 1 ⊢ (𝑤 = 𝑊 → ([(𝐸‘𝑤) / 𝑎]𝜓 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 Vcvv 3231 [wsbc 3468 ‘cfv 5926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-nul 4822 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-iota 5889 df-fv 5934 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |