Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcne12 Structured version   Visualization version   GIF version

Theorem sbcne12 4129
 Description: Distribute proper substitution through an inequality. (Contributed by Andrew Salmon, 18-Jun-2011.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
sbcne12 ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)

Proof of Theorem sbcne12
StepHypRef Expression
1 nne 2936 . . . . . 6 𝐵𝐶𝐵 = 𝐶)
21sbcbii 3632 . . . . 5 ([𝐴 / 𝑥] ¬ 𝐵𝐶[𝐴 / 𝑥]𝐵 = 𝐶)
32a1i 11 . . . 4 (𝐴 ∈ V → ([𝐴 / 𝑥] ¬ 𝐵𝐶[𝐴 / 𝑥]𝐵 = 𝐶))
4 sbcng 3617 . . . 4 (𝐴 ∈ V → ([𝐴 / 𝑥] ¬ 𝐵𝐶 ↔ ¬ [𝐴 / 𝑥]𝐵𝐶))
5 sbceqg 4127 . . . . 5 (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))
6 nne 2936 . . . . 5 𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)
75, 6syl6bbr 278 . . . 4 (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ¬ 𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
83, 4, 73bitr3d 298 . . 3 (𝐴 ∈ V → (¬ [𝐴 / 𝑥]𝐵𝐶 ↔ ¬ 𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
98con4bid 306 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
10 sbcex 3586 . . . 4 ([𝐴 / 𝑥]𝐵𝐶𝐴 ∈ V)
1110con3i 150 . . 3 𝐴 ∈ V → ¬ [𝐴 / 𝑥]𝐵𝐶)
12 csbprc 4123 . . . . 5 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
13 csbprc 4123 . . . . 5 𝐴 ∈ V → 𝐴 / 𝑥𝐶 = ∅)
1412, 13eqtr4d 2797 . . . 4 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)
1514, 6sylibr 224 . . 3 𝐴 ∈ V → ¬ 𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
1611, 152falsed 365 . 2 𝐴 ∈ V → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
179, 16pm2.61i 176 1 ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 196   = wceq 1632   ∈ wcel 2139   ≠ wne 2932  Vcvv 3340  [wsbc 3576  ⦋csb 3674  ∅c0 4058 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-nul 4059 This theorem is referenced by:  disjdsct  29810  cdlemkid3N  36741  cdlemkid4  36742
 Copyright terms: Public domain W3C validator