MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbco4 Structured version   Visualization version   GIF version

Theorem sbco4 2595
Description: Two ways of exchanging two variables. Both sides of the biconditional exchange 𝑥 and 𝑦, either via two temporary variables 𝑢 and 𝑣, or a single temporary 𝑤. (Contributed by Jim Kingdon, 25-Sep-2018.)
Assertion
Ref Expression
sbco4 ([𝑦 / 𝑢][𝑥 / 𝑣][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑)
Distinct variable groups:   𝑣,𝑢,𝜑   𝑥,𝑢,𝑣   𝑦,𝑢,𝑣   𝜑,𝑤   𝑥,𝑤   𝑦,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sbco4
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 sbcom2 2574 . . 3 ([𝑥 / 𝑣][𝑦 / 𝑢][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑦 / 𝑢][𝑥 / 𝑣][𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
2 nfv 1984 . . . . 5 𝑢[𝑣 / 𝑦]𝜑
32sbco2 2544 . . . 4 ([𝑦 / 𝑢][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑦 / 𝑥][𝑣 / 𝑦]𝜑)
43sbbii 2045 . . 3 ([𝑥 / 𝑣][𝑦 / 𝑢][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑)
51, 4bitr3i 266 . 2 ([𝑦 / 𝑢][𝑥 / 𝑣][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑)
6 sbco4lem 2594 . 2 ([𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑡][𝑦 / 𝑥][𝑡 / 𝑦]𝜑)
7 sbco4lem 2594 . 2 ([𝑥 / 𝑡][𝑦 / 𝑥][𝑡 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑)
85, 6, 73bitri 286 1 ([𝑦 / 𝑢][𝑥 / 𝑣][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 196  [wsb 2038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator