Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcssgVD Structured version   Visualization version   GIF version

Theorem sbcssgVD 38637
Description: Virtual deduction proof of sbcssg 4062. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sbcssg 4062 is sbcssgVD 38637 without virtual deductions and was automatically derived from sbcssgVD 38637.
 1:: ⊢ (   𝐴 ∈ 𝐵   ▶   𝐴 ∈ 𝐵   ) 2:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)   ) 3:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]𝑦 ∈ 𝐷 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)   ) 4:2,3: ⊢ (   𝐴 ∈ 𝐵   ▶   (([𝐴 / 𝑥]𝑦 ∈ 𝐶 → [𝐴 / 𝑥]𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷 ))   ) 5:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷) ↔ ([𝐴 / 𝑥]𝑦 ∈ 𝐶 → [𝐴 / 𝑥]𝑦 ∈ 𝐷))   ) 6:4,5: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷))   ) 7:6: ⊢ (   𝐴 ∈ 𝐵   ▶   ∀𝑦([𝐴 / 𝑥](𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷))   ) 8:7: ⊢ (   𝐴 ∈ 𝐵   ▶   (∀𝑦[𝐴 / 𝑥](𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷) ↔ ∀𝑦(𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷) )   ) 9:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]∀𝑦(𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷) ↔ ∀𝑦[𝐴 / 𝑥](𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷))   ) 10:8,9: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]∀𝑦(𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷) ↔ ∀𝑦(𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷) )   ) 11:: ⊢ (𝐶 ⊆ 𝐷 ↔ ∀𝑦(𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷)) 110:11: ⊢ ∀𝑥(𝐶 ⊆ 𝐷 ↔ ∀𝑦(𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷)) 12:1,110: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]𝐶 ⊆ 𝐷 ↔ [𝐴 / 𝑥]∀𝑦(𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷))   ) 13:10,12: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]𝐶 ⊆ 𝐷 ↔ ∀𝑦(𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷))   ) 14:: ⊢ (⦋𝐴 / 𝑥⦌𝐶 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ↔ ∀ 𝑦(𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)) 15:13,14: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]𝐶 ⊆ 𝐷 ↔ ⦋𝐴 / 𝑥⦌𝐶 ⊆ ⦋𝐴 / 𝑥⦌𝐷)   ) qed:15: ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝐶 ⊆ 𝐷 ↔ ⦋ 𝐴 / 𝑥⦌𝐶 ⊆ ⦋𝐴 / 𝑥⦌𝐷))
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbcssgVD (𝐴𝐵 → ([𝐴 / 𝑥]𝐶𝐷𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))

Proof of Theorem sbcssgVD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 idn1 38307 . . . . . . . . . 10 (   𝐴𝐵   ▶   𝐴𝐵   )
2 sbcel2gOLD 38272 . . . . . . . . . 10 (𝐴𝐵 → ([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶))
31, 2e1a 38369 . . . . . . . . 9 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶)   )
4 sbcel2gOLD 38272 . . . . . . . . . 10 (𝐴𝐵 → ([𝐴 / 𝑥]𝑦𝐷𝑦𝐴 / 𝑥𝐷))
51, 4e1a 38369 . . . . . . . . 9 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝐷𝑦𝐴 / 𝑥𝐷)   )
6 imbi12 336 . . . . . . . . 9 (([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶) → (([𝐴 / 𝑥]𝑦𝐷𝑦𝐴 / 𝑥𝐷) → (([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
73, 5, 6e11 38430 . . . . . . . 8 (   𝐴𝐵   ▶   (([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
8 sbcimg 3463 . . . . . . . . 9 (𝐴𝐵 → ([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷)))
91, 8e1a 38369 . . . . . . . 8 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷))   )
10 bibi1 341 . . . . . . . . 9 (([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷)) → (([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) ↔ (([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
1110biimprcd 240 . . . . . . . 8 ((([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) → (([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷)) → ([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
127, 9, 11e11 38430 . . . . . . 7 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
1312gen11 38358 . . . . . 6 (   𝐴𝐵   ▶   𝑦([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
14 albi 1743 . . . . . 6 (∀𝑦([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) → (∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)))
1513, 14e1a 38369 . . . . 5 (   𝐴𝐵   ▶   (∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
16 sbcalgOLD 38269 . . . . . 6 (𝐴𝐵 → ([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)))
171, 16e1a 38369 . . . . 5 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷))   )
18 bibi1 341 . . . . . 6 (([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)) → (([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) ↔ (∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
1918biimprcd 240 . . . . 5 ((∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) → (([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)) → ([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
2015, 17, 19e11 38430 . . . 4 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
21 dfss2 3576 . . . . . 6 (𝐶𝐷 ↔ ∀𝑦(𝑦𝐶𝑦𝐷))
2221ax-gen 1719 . . . . 5 𝑥(𝐶𝐷 ↔ ∀𝑦(𝑦𝐶𝑦𝐷))
23 sbcbi 38266 . . . . 5 (𝐴𝐵 → (∀𝑥(𝐶𝐷 ↔ ∀𝑦(𝑦𝐶𝑦𝐷)) → ([𝐴 / 𝑥]𝐶𝐷[𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷))))
241, 22, 23e10 38436 . . . 4 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝐶𝐷[𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷))   )
25 bibi1 341 . . . . 5 (([𝐴 / 𝑥]𝐶𝐷[𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷)) → (([𝐴 / 𝑥]𝐶𝐷 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) ↔ ([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
2625biimprcd 240 . . . 4 (([𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) → (([𝐴 / 𝑥]𝐶𝐷[𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷)) → ([𝐴 / 𝑥]𝐶𝐷 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
2720, 24, 26e11 38430 . . 3 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝐶𝐷 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
28 dfss2 3576 . . 3 (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))
29 biantr 971 . . . 4 ((([𝐴 / 𝑥]𝐶𝐷 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) ∧ (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))) → ([𝐴 / 𝑥]𝐶𝐷𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))
3029ex 450 . . 3 (([𝐴 / 𝑥]𝐶𝐷 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) → ((𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) → ([𝐴 / 𝑥]𝐶𝐷𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷)))
3127, 28, 30e10 38436 . 2 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝐶𝐷𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷)   )
3231in1 38304 1 (𝐴𝐵 → ([𝐴 / 𝑥]𝐶𝐷𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196  ∀wal 1478   ∈ wcel 1987  [wsbc 3421  ⦋csb 3518   ⊆ wss 3559 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-v 3191  df-sbc 3422  df-csb 3519  df-in 3566  df-ss 3573  df-vd1 38303 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator