MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcth2 Structured version   Visualization version   GIF version

Theorem sbcth2 3504
Description: A substitution into a theorem. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
sbcth2.1 (𝑥𝐵𝜑)
Assertion
Ref Expression
sbcth2 (𝐴𝐵[𝐴 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem sbcth2
StepHypRef Expression
1 sbcth2.1 . . 3 (𝑥𝐵𝜑)
21rgen 2917 . 2 𝑥𝐵 𝜑
3 rspsbc 3499 . 2 (𝐴𝐵 → (∀𝑥𝐵 𝜑[𝐴 / 𝑥]𝜑))
42, 3mpi 20 1 (𝐴𝐵[𝐴 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1987  wral 2907  [wsbc 3417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-v 3188  df-sbc 3418
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator