![]() |
Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbeqi | Structured version Visualization version GIF version |
Description: Equality deduction for substitution. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
Ref | Expression |
---|---|
sbeqi | ⊢ ((𝑥 = 𝑦 ∧ ∀𝑧(𝜑 ↔ 𝜓)) → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spsbbi 2539 | . 2 ⊢ (∀𝑧(𝜑 ↔ 𝜓) → ([𝑥 / 𝑧]𝜑 ↔ [𝑥 / 𝑧]𝜓)) | |
2 | sbequ 2513 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜓 ↔ [𝑦 / 𝑧]𝜓)) | |
3 | 1, 2 | sylan9bbr 739 | 1 ⊢ ((𝑥 = 𝑦 ∧ ∀𝑧(𝜑 ↔ 𝜓)) → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∀wal 1630 = wceq 1632 [wsb 2046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-10 2168 ax-12 2196 ax-13 2391 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-ex 1854 df-nf 1859 df-sb 2047 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |