Mathbox for Giovanni Mascellani < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbeqi Structured version   Visualization version   GIF version

Theorem sbeqi 34299
 Description: Equality deduction for substitution. (Contributed by Giovanni Mascellani, 10-Apr-2018.)
Assertion
Ref Expression
sbeqi ((𝑥 = 𝑦 ∧ ∀𝑧(𝜑𝜓)) → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜓))

Proof of Theorem sbeqi
StepHypRef Expression
1 spsbbi 2539 . 2 (∀𝑧(𝜑𝜓) → ([𝑥 / 𝑧]𝜑 ↔ [𝑥 / 𝑧]𝜓))
2 sbequ 2513 . 2 (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜓 ↔ [𝑦 / 𝑧]𝜓))
31, 2sylan9bbr 739 1 ((𝑥 = 𝑦 ∧ ∀𝑧(𝜑𝜓)) → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383  ∀wal 1630   = wceq 1632  [wsb 2046 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-10 2168  ax-12 2196  ax-13 2391 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ex 1854  df-nf 1859  df-sb 2047 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator