Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbex Structured version   Visualization version   GIF version

Theorem sbex 2462
 Description: Move existential quantifier in and out of substitution. (Contributed by NM, 27-Sep-2003.)
Assertion
Ref Expression
sbex ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑)
Distinct variable groups:   𝑥,𝑦   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem sbex
StepHypRef Expression
1 sbn 2390 . . 3 ([𝑧 / 𝑦] ¬ ∀𝑥 ¬ 𝜑 ↔ ¬ [𝑧 / 𝑦]∀𝑥 ¬ 𝜑)
2 sbal 2461 . . . 4 ([𝑧 / 𝑦]∀𝑥 ¬ 𝜑 ↔ ∀𝑥[𝑧 / 𝑦] ¬ 𝜑)
3 sbn 2390 . . . . 5 ([𝑧 / 𝑦] ¬ 𝜑 ↔ ¬ [𝑧 / 𝑦]𝜑)
43albii 1746 . . . 4 (∀𝑥[𝑧 / 𝑦] ¬ 𝜑 ↔ ∀𝑥 ¬ [𝑧 / 𝑦]𝜑)
52, 4bitri 264 . . 3 ([𝑧 / 𝑦]∀𝑥 ¬ 𝜑 ↔ ∀𝑥 ¬ [𝑧 / 𝑦]𝜑)
61, 5xchbinx 324 . 2 ([𝑧 / 𝑦] ¬ ∀𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥 ¬ [𝑧 / 𝑦]𝜑)
7 df-ex 1704 . . 3 (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)
87sbbii 1886 . 2 ([𝑧 / 𝑦]∃𝑥𝜑 ↔ [𝑧 / 𝑦] ¬ ∀𝑥 ¬ 𝜑)
9 df-ex 1704 . 2 (∃𝑥[𝑧 / 𝑦]𝜑 ↔ ¬ ∀𝑥 ¬ [𝑧 / 𝑦]𝜑)
106, 8, 93bitr4i 292 1 ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 196  ∀wal 1480  ∃wex 1703  [wsb 1879 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880 This theorem is referenced by:  sbmo  2514  sbabel  2792  sbcex2  3484  sbcexgOLD  38579
 Copyright terms: Public domain W3C validator