Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbgoldbm Structured version   Visualization version   GIF version

Theorem sbgoldbm 43948
Description: If the strong binary Goldbach conjecture is valid, the modern version of the original formulation of the Goldbach conjecture also holds: Every integer greater than 5 can be expressed as the sum of three primes. (Contributed by AV, 24-Dec-2021.)
Assertion
Ref Expression
sbgoldbm (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))
Distinct variable group:   𝑛,𝑝,𝑞,𝑟

Proof of Theorem sbgoldbm
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 breq2 5069 . . . 4 (𝑛 = 𝑚 → (4 < 𝑛 ↔ 4 < 𝑚))
2 eleq1w 2895 . . . 4 (𝑛 = 𝑚 → (𝑛 ∈ GoldbachEven ↔ 𝑚 ∈ GoldbachEven ))
31, 2imbi12d 347 . . 3 (𝑛 = 𝑚 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) ↔ (4 < 𝑚𝑚 ∈ GoldbachEven )))
43cbvralvw 3449 . 2 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) ↔ ∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ))
5 eluz2 12248 . . . . 5 (𝑛 ∈ (ℤ‘6) ↔ (6 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 6 ≤ 𝑛))
6 zeoALTV 43834 . . . . . . . 8 (𝑛 ∈ ℤ → (𝑛 ∈ Even ∨ 𝑛 ∈ Odd ))
7 sgoldbeven3prm 43947 . . . . . . . . . 10 (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ((𝑛 ∈ Even ∧ 6 ≤ 𝑛) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
87expdcom 417 . . . . . . . . 9 (𝑛 ∈ Even → (6 ≤ 𝑛 → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
9 sbgoldbwt 43941 . . . . . . . . . . 11 (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ))
10 rspa 3206 . . . . . . . . . . . . . 14 ((∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ) ∧ 𝑛 ∈ Odd ) → (5 < 𝑛𝑛 ∈ GoldbachOddW ))
11 df-6 11703 . . . . . . . . . . . . . . . . . . . . 21 6 = (5 + 1)
1211breq1i 5072 . . . . . . . . . . . . . . . . . . . 20 (6 ≤ 𝑛 ↔ (5 + 1) ≤ 𝑛)
13 5nn 11722 . . . . . . . . . . . . . . . . . . . . . . 23 5 ∈ ℕ
1413nnzi 12005 . . . . . . . . . . . . . . . . . . . . . 22 5 ∈ ℤ
15 oddz 43795 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ Odd → 𝑛 ∈ ℤ)
16 zltp1le 12031 . . . . . . . . . . . . . . . . . . . . . 22 ((5 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (5 < 𝑛 ↔ (5 + 1) ≤ 𝑛))
1714, 15, 16sylancr 589 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ Odd → (5 < 𝑛 ↔ (5 + 1) ≤ 𝑛))
1817biimprd 250 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ Odd → ((5 + 1) ≤ 𝑛 → 5 < 𝑛))
1912, 18syl5bi 244 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ Odd → (6 ≤ 𝑛 → 5 < 𝑛))
2019imp 409 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ Odd ∧ 6 ≤ 𝑛) → 5 < 𝑛)
21 isgbow 43916 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ GoldbachOddW ↔ (𝑛 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
2221simprbi 499 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ GoldbachOddW → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))
2322a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ Odd ∧ 6 ≤ 𝑛) → (𝑛 ∈ GoldbachOddW → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
2420, 23embantd 59 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ Odd ∧ 6 ≤ 𝑛) → ((5 < 𝑛𝑛 ∈ GoldbachOddW ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
2524ex 415 . . . . . . . . . . . . . . . 16 (𝑛 ∈ Odd → (6 ≤ 𝑛 → ((5 < 𝑛𝑛 ∈ GoldbachOddW ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
2625com23 86 . . . . . . . . . . . . . . 15 (𝑛 ∈ Odd → ((5 < 𝑛𝑛 ∈ GoldbachOddW ) → (6 ≤ 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
2726adantl 484 . . . . . . . . . . . . . 14 ((∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ) ∧ 𝑛 ∈ Odd ) → ((5 < 𝑛𝑛 ∈ GoldbachOddW ) → (6 ≤ 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
2810, 27mpd 15 . . . . . . . . . . . . 13 ((∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ) ∧ 𝑛 ∈ Odd ) → (6 ≤ 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
2928ex 415 . . . . . . . . . . . 12 (∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ) → (𝑛 ∈ Odd → (6 ≤ 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
3029com23 86 . . . . . . . . . . 11 (∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ) → (6 ≤ 𝑛 → (𝑛 ∈ Odd → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
319, 30syl 17 . . . . . . . . . 10 (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → (6 ≤ 𝑛 → (𝑛 ∈ Odd → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
3231com13 88 . . . . . . . . 9 (𝑛 ∈ Odd → (6 ≤ 𝑛 → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
338, 32jaoi 853 . . . . . . . 8 ((𝑛 ∈ Even ∨ 𝑛 ∈ Odd ) → (6 ≤ 𝑛 → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
346, 33syl 17 . . . . . . 7 (𝑛 ∈ ℤ → (6 ≤ 𝑛 → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
3534imp 409 . . . . . 6 ((𝑛 ∈ ℤ ∧ 6 ≤ 𝑛) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
36353adant1 1126 . . . . 5 ((6 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 6 ≤ 𝑛) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
375, 36sylbi 219 . . . 4 (𝑛 ∈ (ℤ‘6) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
3837impcom 410 . . 3 ((∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) ∧ 𝑛 ∈ (ℤ‘6)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))
3938ralrimiva 3182 . 2 (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))
404, 39sylbi 219 1 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110  wral 3138  wrex 3139   class class class wbr 5065  cfv 6354  (class class class)co 7155  1c1 10537   + caddc 10539   < clt 10674  cle 10675  4c4 11693  5c5 11694  6c6 11695  cz 11980  cuz 12242  cprime 16014   Even ceven 43788   Odd codd 43789   GoldbachEven cgbe 43909   GoldbachOddW cgbow 43910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-fz 12892  df-seq 13369  df-exp 13429  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-dvds 15607  df-prm 16015  df-even 43790  df-odd 43791  df-gbe 43912  df-gbow 43913
This theorem is referenced by:  sbgoldbmb  43950  sbgoldbo  43951
  Copyright terms: Public domain W3C validator