Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbgoldbm Structured version   Visualization version   GIF version

Theorem sbgoldbm 41997
 Description: If the strong binary Goldbach conjecture is valid, the modern version of the original formulation of the Goldbach conjecture also holds: Every integer greater than 5 can be expressed as the sum of three primes. (Contributed by AV, 24-Dec-2021.)
Assertion
Ref Expression
sbgoldbm (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))
Distinct variable group:   𝑛,𝑝,𝑞,𝑟

Proof of Theorem sbgoldbm
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 breq2 4689 . . . 4 (𝑛 = 𝑚 → (4 < 𝑛 ↔ 4 < 𝑚))
2 eleq1w 2713 . . . 4 (𝑛 = 𝑚 → (𝑛 ∈ GoldbachEven ↔ 𝑚 ∈ GoldbachEven ))
31, 2imbi12d 333 . . 3 (𝑛 = 𝑚 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) ↔ (4 < 𝑚𝑚 ∈ GoldbachEven )))
43cbvralv 3201 . 2 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) ↔ ∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ))
5 eluz2 11731 . . . . 5 (𝑛 ∈ (ℤ‘6) ↔ (6 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 6 ≤ 𝑛))
6 zeoALTV 41906 . . . . . . . 8 (𝑛 ∈ ℤ → (𝑛 ∈ Even ∨ 𝑛 ∈ Odd ))
7 sgoldbeven3prm 41996 . . . . . . . . . 10 (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ((𝑛 ∈ Even ∧ 6 ≤ 𝑛) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
87expdcom 454 . . . . . . . . 9 (𝑛 ∈ Even → (6 ≤ 𝑛 → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
9 sbgoldbwt 41990 . . . . . . . . . . 11 (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ))
10 rspa 2959 . . . . . . . . . . . . . 14 ((∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ) ∧ 𝑛 ∈ Odd ) → (5 < 𝑛𝑛 ∈ GoldbachOddW ))
11 df-6 11121 . . . . . . . . . . . . . . . . . . . . 21 6 = (5 + 1)
1211breq1i 4692 . . . . . . . . . . . . . . . . . . . 20 (6 ≤ 𝑛 ↔ (5 + 1) ≤ 𝑛)
13 5nn 11226 . . . . . . . . . . . . . . . . . . . . . . 23 5 ∈ ℕ
1413nnzi 11439 . . . . . . . . . . . . . . . . . . . . . 22 5 ∈ ℤ
15 oddz 41869 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ Odd → 𝑛 ∈ ℤ)
16 zltp1le 11465 . . . . . . . . . . . . . . . . . . . . . 22 ((5 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (5 < 𝑛 ↔ (5 + 1) ≤ 𝑛))
1714, 15, 16sylancr 696 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ Odd → (5 < 𝑛 ↔ (5 + 1) ≤ 𝑛))
1817biimprd 238 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ Odd → ((5 + 1) ≤ 𝑛 → 5 < 𝑛))
1912, 18syl5bi 232 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ Odd → (6 ≤ 𝑛 → 5 < 𝑛))
2019imp 444 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ Odd ∧ 6 ≤ 𝑛) → 5 < 𝑛)
21 isgbow 41965 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ GoldbachOddW ↔ (𝑛 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
2221simprbi 479 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ GoldbachOddW → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))
2322a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ Odd ∧ 6 ≤ 𝑛) → (𝑛 ∈ GoldbachOddW → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
2420, 23embantd 59 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ Odd ∧ 6 ≤ 𝑛) → ((5 < 𝑛𝑛 ∈ GoldbachOddW ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
2524ex 449 . . . . . . . . . . . . . . . 16 (𝑛 ∈ Odd → (6 ≤ 𝑛 → ((5 < 𝑛𝑛 ∈ GoldbachOddW ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
2625com23 86 . . . . . . . . . . . . . . 15 (𝑛 ∈ Odd → ((5 < 𝑛𝑛 ∈ GoldbachOddW ) → (6 ≤ 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
2726adantl 481 . . . . . . . . . . . . . 14 ((∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ) ∧ 𝑛 ∈ Odd ) → ((5 < 𝑛𝑛 ∈ GoldbachOddW ) → (6 ≤ 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
2810, 27mpd 15 . . . . . . . . . . . . 13 ((∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ) ∧ 𝑛 ∈ Odd ) → (6 ≤ 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
2928ex 449 . . . . . . . . . . . 12 (∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ) → (𝑛 ∈ Odd → (6 ≤ 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
3029com23 86 . . . . . . . . . . 11 (∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ) → (6 ≤ 𝑛 → (𝑛 ∈ Odd → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
319, 30syl 17 . . . . . . . . . 10 (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → (6 ≤ 𝑛 → (𝑛 ∈ Odd → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
3231com13 88 . . . . . . . . 9 (𝑛 ∈ Odd → (6 ≤ 𝑛 → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
338, 32jaoi 393 . . . . . . . 8 ((𝑛 ∈ Even ∨ 𝑛 ∈ Odd ) → (6 ≤ 𝑛 → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
346, 33syl 17 . . . . . . 7 (𝑛 ∈ ℤ → (6 ≤ 𝑛 → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
3534imp 444 . . . . . 6 ((𝑛 ∈ ℤ ∧ 6 ≤ 𝑛) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
36353adant1 1099 . . . . 5 ((6 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 6 ≤ 𝑛) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
375, 36sylbi 207 . . . 4 (𝑛 ∈ (ℤ‘6) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
3837impcom 445 . . 3 ((∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) ∧ 𝑛 ∈ (ℤ‘6)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))
3938ralrimiva 2995 . 2 (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))
404, 39sylbi 207 1 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  ∀wral 2941  ∃wrex 2942   class class class wbr 4685  ‘cfv 5926  (class class class)co 6690  1c1 9975   + caddc 9977   < clt 10112   ≤ cle 10113  4c4 11110  5c5 11111  6c6 11112  ℤcz 11415  ℤ≥cuz 11725  ℙcprime 15432   Even ceven 41862   Odd codd 41863   GoldbachEven cgbe 41958   GoldbachOddW cgbow 41959 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-prm 15433  df-even 41864  df-odd 41865  df-gbe 41961  df-gbow 41962 This theorem is referenced by:  sbgoldbmb  41999  sbgoldbo  42000
 Copyright terms: Public domain W3C validator