Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbi2 Structured version   Visualization version   GIF version

Theorem sbi2 2392
 Description: Introduction of implication into substitution. (Contributed by NM, 14-May-1993.)
Assertion
Ref Expression
sbi2 (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑𝜓))

Proof of Theorem sbi2
StepHypRef Expression
1 sbn 2390 . . 3 ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)
2 pm2.21 120 . . . 4 𝜑 → (𝜑𝜓))
32sbimi 1883 . . 3 ([𝑦 / 𝑥] ¬ 𝜑 → [𝑦 / 𝑥](𝜑𝜓))
41, 3sylbir 225 . 2 (¬ [𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥](𝜑𝜓))
5 ax-1 6 . . 3 (𝜓 → (𝜑𝜓))
65sbimi 1883 . 2 ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥](𝜑𝜓))
74, 6ja 173 1 (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑𝜓))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4  [wsb 1877 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-10 2016  ax-12 2044  ax-13 2245 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1702  df-nf 1707  df-sb 1878 This theorem is referenced by:  sbim  2394
 Copyright terms: Public domain W3C validator