Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbimi Structured version   Visualization version   GIF version

Theorem sbimi 1943
 Description: Infer substitution into antecedent and consequent of an implication. (Contributed by NM, 25-Jun-1998.)
Hypothesis
Ref Expression
sbimi.1 (𝜑𝜓)
Assertion
Ref Expression
sbimi ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)

Proof of Theorem sbimi
StepHypRef Expression
1 sbimi.1 . . . 4 (𝜑𝜓)
21imim2i 16 . . 3 ((𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜓))
31anim2i 592 . . . 4 ((𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜓))
43eximi 1802 . . 3 (∃𝑥(𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜓))
52, 4anim12i 589 . 2 (((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)) → ((𝑥 = 𝑦𝜓) ∧ ∃𝑥(𝑥 = 𝑦𝜓)))
6 df-sb 1938 . 2 ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
7 df-sb 1938 . 2 ([𝑦 / 𝑥]𝜓 ↔ ((𝑥 = 𝑦𝜓) ∧ ∃𝑥(𝑥 = 𝑦𝜓)))
85, 6, 73imtr4i 281 1 ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383  ∃wex 1744  [wsb 1937 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777 This theorem depends on definitions:  df-bi 197  df-an 385  df-ex 1745  df-sb 1938 This theorem is referenced by:  sbbii  1944  hbsb3  2392  sb6f  2413  sbi2  2421  sbie  2436  2mo  2580  fmptdF  29584  funcnv4mpt  29598  disjdsct  29608  measiuns  30408  ballotlemodife  30687  bj-hbsb3v  32886  bj-sbidmOLD  32956  mptsnunlem  33315
 Copyright terms: Public domain W3C validator