MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sblbis Structured version   Visualization version   GIF version

Theorem sblbis 2432
Description: Introduce left biconditional inside of a substitution. (Contributed by NM, 19-Aug-1993.)
Hypothesis
Ref Expression
sblbis.1 ([𝑦 / 𝑥]𝜑𝜓)
Assertion
Ref Expression
sblbis ([𝑦 / 𝑥](𝜒𝜑) ↔ ([𝑦 / 𝑥]𝜒𝜓))

Proof of Theorem sblbis
StepHypRef Expression
1 sbbi 2429 . 2 ([𝑦 / 𝑥](𝜒𝜑) ↔ ([𝑦 / 𝑥]𝜒 ↔ [𝑦 / 𝑥]𝜑))
2 sblbis.1 . . 3 ([𝑦 / 𝑥]𝜑𝜓)
32bibi2i 326 . 2 (([𝑦 / 𝑥]𝜒 ↔ [𝑦 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜒𝜓))
41, 3bitri 264 1 ([𝑦 / 𝑥](𝜒𝜑) ↔ ([𝑦 / 𝑥]𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 196  [wsb 1937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-10 2059  ax-12 2087  ax-13 2282
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ex 1745  df-nf 1750  df-sb 1938
This theorem is referenced by:  sbie  2436  sb8eu  2532  sb8iota  5896  wl-sb8eut  33489
  Copyright terms: Public domain W3C validator