Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sblpnf Structured version   Visualization version   GIF version

Theorem sblpnf 40649
Description: The infinity ball in the absolute value metric is just the whole space. 𝑆 analogue of blpnf 23009. (Contributed by Steve Rodriguez, 8-Nov-2015.)
Hypotheses
Ref Expression
sblpnf.s (𝜑𝑆 ∈ {ℝ, ℂ})
sblpnf.d 𝐷 = ((abs ∘ − ) ↾ (𝑆 × 𝑆))
Assertion
Ref Expression
sblpnf ((𝜑𝑃𝑆) → (𝑃(ball‘𝐷)+∞) = 𝑆)

Proof of Theorem sblpnf
StepHypRef Expression
1 sblpnf.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 elpri 4591 . . 3 (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ))
3 sblpnf.d . . . . 5 𝐷 = ((abs ∘ − ) ↾ (𝑆 × 𝑆))
4 eqid 2823 . . . . . . 7 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
54remet 23400 . . . . . 6 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ)
6 xpeq12 5582 . . . . . . . . 9 ((𝑆 = ℝ ∧ 𝑆 = ℝ) → (𝑆 × 𝑆) = (ℝ × ℝ))
76anidms 569 . . . . . . . 8 (𝑆 = ℝ → (𝑆 × 𝑆) = (ℝ × ℝ))
87reseq2d 5855 . . . . . . 7 (𝑆 = ℝ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (ℝ × ℝ)))
9 fveq2 6672 . . . . . . 7 (𝑆 = ℝ → (Met‘𝑆) = (Met‘ℝ))
108, 9eleq12d 2909 . . . . . 6 (𝑆 = ℝ → (((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆) ↔ ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ)))
115, 10mpbiri 260 . . . . 5 (𝑆 = ℝ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆))
123, 11eqeltrid 2919 . . . 4 (𝑆 = ℝ → 𝐷 ∈ (Met‘𝑆))
13 relco 6099 . . . . . . . . 9 Rel (abs ∘ − )
14 resdm 5899 . . . . . . . . 9 (Rel (abs ∘ − ) → ((abs ∘ − ) ↾ dom (abs ∘ − )) = (abs ∘ − ))
1513, 14ax-mp 5 . . . . . . . 8 ((abs ∘ − ) ↾ dom (abs ∘ − )) = (abs ∘ − )
16 absf 14699 . . . . . . . . . . . 12 abs:ℂ⟶ℝ
17 ax-resscn 10596 . . . . . . . . . . . 12 ℝ ⊆ ℂ
18 fss 6529 . . . . . . . . . . . 12 ((abs:ℂ⟶ℝ ∧ ℝ ⊆ ℂ) → abs:ℂ⟶ℂ)
1916, 17, 18mp2an 690 . . . . . . . . . . 11 abs:ℂ⟶ℂ
20 subf 10890 . . . . . . . . . . 11 − :(ℂ × ℂ)⟶ℂ
21 fco 6533 . . . . . . . . . . 11 ((abs:ℂ⟶ℂ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℂ)
2219, 20, 21mp2an 690 . . . . . . . . . 10 (abs ∘ − ):(ℂ × ℂ)⟶ℂ
2322fdmi 6526 . . . . . . . . 9 dom (abs ∘ − ) = (ℂ × ℂ)
2423reseq2i 5852 . . . . . . . 8 ((abs ∘ − ) ↾ dom (abs ∘ − )) = ((abs ∘ − ) ↾ (ℂ × ℂ))
2515, 24eqtr3i 2848 . . . . . . 7 (abs ∘ − ) = ((abs ∘ − ) ↾ (ℂ × ℂ))
26 cnmet 23382 . . . . . . 7 (abs ∘ − ) ∈ (Met‘ℂ)
2725, 26eqeltrri 2912 . . . . . 6 ((abs ∘ − ) ↾ (ℂ × ℂ)) ∈ (Met‘ℂ)
28 xpeq12 5582 . . . . . . . . 9 ((𝑆 = ℂ ∧ 𝑆 = ℂ) → (𝑆 × 𝑆) = (ℂ × ℂ))
2928anidms 569 . . . . . . . 8 (𝑆 = ℂ → (𝑆 × 𝑆) = (ℂ × ℂ))
3029reseq2d 5855 . . . . . . 7 (𝑆 = ℂ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (ℂ × ℂ)))
31 fveq2 6672 . . . . . . 7 (𝑆 = ℂ → (Met‘𝑆) = (Met‘ℂ))
3230, 31eleq12d 2909 . . . . . 6 (𝑆 = ℂ → (((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆) ↔ ((abs ∘ − ) ↾ (ℂ × ℂ)) ∈ (Met‘ℂ)))
3327, 32mpbiri 260 . . . . 5 (𝑆 = ℂ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆))
343, 33eqeltrid 2919 . . . 4 (𝑆 = ℂ → 𝐷 ∈ (Met‘𝑆))
3512, 34jaoi 853 . . 3 ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝐷 ∈ (Met‘𝑆))
361, 2, 353syl 18 . 2 (𝜑𝐷 ∈ (Met‘𝑆))
37 blpnf 23009 . 2 ((𝐷 ∈ (Met‘𝑆) ∧ 𝑃𝑆) → (𝑃(ball‘𝐷)+∞) = 𝑆)
3836, 37sylan 582 1 ((𝜑𝑃𝑆) → (𝑃(ball‘𝐷)+∞) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1537  wcel 2114  wss 3938  {cpr 4571   × cxp 5555  dom cdm 5557  cres 5559  ccom 5561  Rel wrel 5562  wf 6353  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  +∞cpnf 10674  cmin 10872  abscabs 14595  Metcmet 20533  ballcbl 20534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542
This theorem is referenced by:  dvconstbi  40673
  Copyright terms: Public domain W3C validator