![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > scmatlss | Structured version Visualization version GIF version |
Description: The set of scalar matrices is a linear subspace of the matrix algebra. (Contributed by AV, 25-Dec-2019.) |
Ref | Expression |
---|---|
scmatlss.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
scmatlss.s | ⊢ 𝑆 = (𝑁 ScMat 𝑅) |
Ref | Expression |
---|---|
scmatlss | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (LSubSp‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scmatlss.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | 1 | matsca2 20274 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝐴)) |
3 | eqidd 2652 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝑅) = (Base‘𝑅)) | |
4 | eqidd 2652 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝐴) = (Base‘𝐴)) | |
5 | eqidd 2652 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (+g‘𝐴) = (+g‘𝐴)) | |
6 | eqidd 2652 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘𝐴)) | |
7 | eqidd 2652 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (LSubSp‘𝐴) = (LSubSp‘𝐴)) | |
8 | eqid 2651 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
9 | eqid 2651 | . . . 4 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
10 | eqid 2651 | . . . 4 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
11 | eqid 2651 | . . . 4 ⊢ ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘𝐴) | |
12 | scmatlss.s | . . . 4 ⊢ 𝑆 = (𝑁 ScMat 𝑅) | |
13 | 8, 1, 9, 10, 11, 12 | scmatval 20358 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)𝑚 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))}) |
14 | ssrab2 3720 | . . 3 ⊢ {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)𝑚 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))} ⊆ (Base‘𝐴) | |
15 | 13, 14 | syl6eqss 3688 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ⊆ (Base‘𝐴)) |
16 | eqid 2651 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
17 | 1, 9, 8, 16, 12 | scmatid 20368 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) ∈ 𝑆) |
18 | ne0i 3954 | . . 3 ⊢ ((1r‘𝐴) ∈ 𝑆 → 𝑆 ≠ ∅) | |
19 | 17, 18 | syl 17 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ≠ ∅) |
20 | 8, 1, 12, 11 | smatvscl 20378 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑥 ∈ 𝑆)) → (𝑎( ·𝑠 ‘𝐴)𝑥) ∈ 𝑆) |
21 | 20 | 3adantr3 1242 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑎( ·𝑠 ‘𝐴)𝑥) ∈ 𝑆) |
22 | simpr3 1089 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ 𝑆) | |
23 | 21, 22 | jca 553 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑎( ·𝑠 ‘𝐴)𝑥) ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) |
24 | 1, 9, 8, 16, 12 | scmataddcl 20370 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑎( ·𝑠 ‘𝐴)𝑥) ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑎( ·𝑠 ‘𝐴)𝑥)(+g‘𝐴)𝑦) ∈ 𝑆) |
25 | 23, 24 | syldan 486 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑎( ·𝑠 ‘𝐴)𝑥)(+g‘𝐴)𝑦) ∈ 𝑆) |
26 | 2, 3, 4, 5, 6, 7, 15, 19, 25 | islssd 18984 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (LSubSp‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 ∃wrex 2942 {crab 2945 ∅c0 3948 ‘cfv 5926 (class class class)co 6690 Fincfn 7997 Basecbs 15904 +gcplusg 15988 ·𝑠 cvsca 15992 0gc0g 16147 1rcur 18547 Ringcrg 18593 LSubSpclss 18980 Mat cmat 20261 ScMat cscmat 20343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-ot 4219 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-ixp 7951 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-sup 8389 df-oi 8456 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-fz 12365 df-fzo 12505 df-seq 12842 df-hash 13158 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-sca 16004 df-vsca 16005 df-ip 16006 df-tset 16007 df-ple 16008 df-ds 16011 df-hom 16013 df-cco 16014 df-0g 16149 df-gsum 16150 df-prds 16155 df-pws 16157 df-mre 16293 df-mrc 16294 df-acs 16296 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-mhm 17382 df-submnd 17383 df-grp 17472 df-minusg 17473 df-sbg 17474 df-mulg 17588 df-subg 17638 df-ghm 17705 df-cntz 17796 df-cmn 18241 df-abl 18242 df-mgp 18536 df-ur 18548 df-ring 18595 df-subrg 18826 df-lmod 18913 df-lss 18981 df-sra 19220 df-rgmod 19221 df-dsmm 20124 df-frlm 20139 df-mamu 20238 df-mat 20262 df-scmat 20345 |
This theorem is referenced by: scmatghm 20387 |
Copyright terms: Public domain | W3C validator |