Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatscmid Structured version   Visualization version   GIF version

Theorem scmatscmid 20360
 Description: A scalar matrix can be expressed as a multiplication of a scalar with the identity matrix. (Contributed by AV, 30-Oct-2019.) (Revised by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
scmatval.k 𝐾 = (Base‘𝑅)
scmatval.a 𝐴 = (𝑁 Mat 𝑅)
scmatval.b 𝐵 = (Base‘𝐴)
scmatval.1 1 = (1r𝐴)
scmatval.t · = ( ·𝑠𝐴)
scmatval.s 𝑆 = (𝑁 ScMat 𝑅)
Assertion
Ref Expression
scmatscmid ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) → ∃𝑐𝐾 𝑀 = (𝑐 · 1 ))
Distinct variable groups:   𝐾,𝑐   𝑁,𝑐   𝑅,𝑐   𝑀,𝑐
Allowed substitution hints:   𝐴(𝑐)   𝐵(𝑐)   𝑆(𝑐)   · (𝑐)   1 (𝑐)   𝑉(𝑐)

Proof of Theorem scmatscmid
StepHypRef Expression
1 scmatval.k . . . 4 𝐾 = (Base‘𝑅)
2 scmatval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 scmatval.b . . . 4 𝐵 = (Base‘𝐴)
4 scmatval.1 . . . 4 1 = (1r𝐴)
5 scmatval.t . . . 4 · = ( ·𝑠𝐴)
6 scmatval.s . . . 4 𝑆 = (𝑁 ScMat 𝑅)
71, 2, 3, 4, 5, 6scmatel 20359 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝑆 ↔ (𝑀𝐵 ∧ ∃𝑐𝐾 𝑀 = (𝑐 · 1 ))))
87simplbda 653 . 2 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ 𝑀𝑆) → ∃𝑐𝐾 𝑀 = (𝑐 · 1 ))
983impa 1278 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) → ∃𝑐𝐾 𝑀 = (𝑐 · 1 ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  ∃wrex 2942  ‘cfv 5926  (class class class)co 6690  Fincfn 7997  Basecbs 15904   ·𝑠 cvsca 15992  1rcur 18547   Mat cmat 20261   ScMat cscmat 20343 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-iota 5889  df-fun 5928  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-scmat 20345 This theorem is referenced by:  scmate  20364  scmatscm  20367  scmataddcl  20370  scmatsubcl  20371  scmatfo  20384
 Copyright terms: Public domain W3C validator