![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > scmatsgrp1 | Structured version Visualization version GIF version |
Description: The set of scalar matrices is a subgroup of the group/ring of diagonal matrices. (Contributed by AV, 21-Aug-2019.) |
Ref | Expression |
---|---|
scmatid.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
scmatid.b | ⊢ 𝐵 = (Base‘𝐴) |
scmatid.e | ⊢ 𝐸 = (Base‘𝑅) |
scmatid.0 | ⊢ 0 = (0g‘𝑅) |
scmatid.s | ⊢ 𝑆 = (𝑁 ScMat 𝑅) |
scmatsgrp1.d | ⊢ 𝐷 = (𝑁 DMat 𝑅) |
scmatsgrp1.c | ⊢ 𝐶 = (𝐴 ↾s 𝐷) |
Ref | Expression |
---|---|
scmatsgrp1 | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubGrp‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scmatid.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | scmatid.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
3 | scmatid.e | . . . . 5 ⊢ 𝐸 = (Base‘𝑅) | |
4 | scmatid.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
5 | scmatid.s | . . . . 5 ⊢ 𝑆 = (𝑁 ScMat 𝑅) | |
6 | scmatsgrp1.d | . . . . 5 ⊢ 𝐷 = (𝑁 DMat 𝑅) | |
7 | 1, 2, 3, 4, 5, 6 | scmatdmat 20444 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥 ∈ 𝑆 → 𝑥 ∈ 𝐷)) |
8 | 7 | ssrdv 3715 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ⊆ 𝐷) |
9 | 1, 2, 4, 6 | dmatsgrp 20428 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐷 ∈ (SubGrp‘𝐴)) |
10 | 9 | ancoms 468 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐷 ∈ (SubGrp‘𝐴)) |
11 | scmatsgrp1.c | . . . . . 6 ⊢ 𝐶 = (𝐴 ↾s 𝐷) | |
12 | 11 | subgbas 17720 | . . . . 5 ⊢ (𝐷 ∈ (SubGrp‘𝐴) → 𝐷 = (Base‘𝐶)) |
13 | 12 | eqcomd 2730 | . . . 4 ⊢ (𝐷 ∈ (SubGrp‘𝐴) → (Base‘𝐶) = 𝐷) |
14 | 10, 13 | syl 17 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝐶) = 𝐷) |
15 | 8, 14 | sseqtr4d 3748 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ⊆ (Base‘𝐶)) |
16 | 1, 2, 3, 4, 5 | scmatid 20443 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) ∈ 𝑆) |
17 | ne0i 4029 | . . 3 ⊢ ((1r‘𝐴) ∈ 𝑆 → 𝑆 ≠ ∅) | |
18 | 16, 17 | syl 17 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ≠ ∅) |
19 | 10 | adantr 472 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝐷 ∈ (SubGrp‘𝐴)) |
20 | 7 | com12 32 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑆 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑥 ∈ 𝐷)) |
21 | 20 | adantr 472 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑥 ∈ 𝐷)) |
22 | 21 | impcom 445 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑥 ∈ 𝐷) |
23 | 1, 2, 3, 4, 5, 6 | scmatdmat 20444 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦 ∈ 𝑆 → 𝑦 ∈ 𝐷)) |
24 | 23 | a1d 25 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥 ∈ 𝑆 → (𝑦 ∈ 𝑆 → 𝑦 ∈ 𝐷))) |
25 | 24 | imp32 448 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ 𝐷) |
26 | eqid 2724 | . . . . . . 7 ⊢ (-g‘𝐴) = (-g‘𝐴) | |
27 | eqid 2724 | . . . . . . 7 ⊢ (-g‘𝐶) = (-g‘𝐶) | |
28 | 26, 11, 27 | subgsub 17728 | . . . . . 6 ⊢ ((𝐷 ∈ (SubGrp‘𝐴) ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥(-g‘𝐴)𝑦) = (𝑥(-g‘𝐶)𝑦)) |
29 | 28 | eqcomd 2730 | . . . . 5 ⊢ ((𝐷 ∈ (SubGrp‘𝐴) ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥(-g‘𝐶)𝑦) = (𝑥(-g‘𝐴)𝑦)) |
30 | 19, 22, 25, 29 | syl3anc 1439 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(-g‘𝐶)𝑦) = (𝑥(-g‘𝐴)𝑦)) |
31 | 1, 2, 3, 4, 5 | scmatsubcl 20446 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(-g‘𝐴)𝑦) ∈ 𝑆) |
32 | 30, 31 | eqeltrd 2803 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(-g‘𝐶)𝑦) ∈ 𝑆) |
33 | 32 | ralrimivva 3073 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(-g‘𝐶)𝑦) ∈ 𝑆) |
34 | 1, 2, 4, 6 | dmatsrng 20430 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐷 ∈ (SubRing‘𝐴)) |
35 | 34 | ancoms 468 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐷 ∈ (SubRing‘𝐴)) |
36 | 11 | subrgring 18906 | . . . 4 ⊢ (𝐷 ∈ (SubRing‘𝐴) → 𝐶 ∈ Ring) |
37 | 35, 36 | syl 17 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring) |
38 | ringgrp 18673 | . . 3 ⊢ (𝐶 ∈ Ring → 𝐶 ∈ Grp) | |
39 | eqid 2724 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
40 | 39, 27 | issubg4 17735 | . . 3 ⊢ (𝐶 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐶) ↔ (𝑆 ⊆ (Base‘𝐶) ∧ 𝑆 ≠ ∅ ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(-g‘𝐶)𝑦) ∈ 𝑆))) |
41 | 37, 38, 40 | 3syl 18 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑆 ∈ (SubGrp‘𝐶) ↔ (𝑆 ⊆ (Base‘𝐶) ∧ 𝑆 ≠ ∅ ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(-g‘𝐶)𝑦) ∈ 𝑆))) |
42 | 15, 18, 33, 41 | mpbir3and 1382 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubGrp‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1596 ∈ wcel 2103 ≠ wne 2896 ∀wral 3014 ⊆ wss 3680 ∅c0 4023 ‘cfv 6001 (class class class)co 6765 Fincfn 8072 Basecbs 15980 ↾s cress 15981 0gc0g 16223 Grpcgrp 17544 -gcsg 17546 SubGrpcsubg 17710 1rcur 18622 Ringcrg 18668 SubRingcsubrg 18899 Mat cmat 20336 DMat cdmat 20417 ScMat cscmat 20418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-inf2 8651 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-ot 4294 df-uni 4545 df-int 4584 df-iun 4630 df-iin 4631 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-se 5178 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-isom 6010 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-of 7014 df-om 7183 df-1st 7285 df-2nd 7286 df-supp 7416 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-1o 7680 df-oadd 7684 df-er 7862 df-map 7976 df-ixp 8026 df-en 8073 df-dom 8074 df-sdom 8075 df-fin 8076 df-fsupp 8392 df-sup 8464 df-oi 8531 df-card 8878 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-nn 11134 df-2 11192 df-3 11193 df-4 11194 df-5 11195 df-6 11196 df-7 11197 df-8 11198 df-9 11199 df-n0 11406 df-z 11491 df-dec 11607 df-uz 11801 df-fz 12441 df-fzo 12581 df-seq 12917 df-hash 13233 df-struct 15982 df-ndx 15983 df-slot 15984 df-base 15986 df-sets 15987 df-ress 15988 df-plusg 16077 df-mulr 16078 df-sca 16080 df-vsca 16081 df-ip 16082 df-tset 16083 df-ple 16084 df-ds 16087 df-hom 16089 df-cco 16090 df-0g 16225 df-gsum 16226 df-prds 16231 df-pws 16233 df-mre 16369 df-mrc 16370 df-acs 16372 df-mgm 17364 df-sgrp 17406 df-mnd 17417 df-mhm 17457 df-submnd 17458 df-grp 17547 df-minusg 17548 df-sbg 17549 df-mulg 17663 df-subg 17713 df-ghm 17780 df-cntz 17871 df-cmn 18316 df-abl 18317 df-mgp 18611 df-ur 18623 df-ring 18670 df-subrg 18901 df-lmod 18988 df-lss 19056 df-sra 19295 df-rgmod 19296 df-dsmm 20199 df-frlm 20214 df-mamu 20313 df-mat 20337 df-dmat 20419 df-scmat 20420 |
This theorem is referenced by: scmatsrng1 20452 |
Copyright terms: Public domain | W3C validator |