MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatval Structured version   Visualization version   GIF version

Theorem scmatval 21116
Description: The set of 𝑁 x 𝑁 scalar matrices over (a ring) 𝑅. (Contributed by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
scmatval.k 𝐾 = (Base‘𝑅)
scmatval.a 𝐴 = (𝑁 Mat 𝑅)
scmatval.b 𝐵 = (Base‘𝐴)
scmatval.1 1 = (1r𝐴)
scmatval.t · = ( ·𝑠𝐴)
scmatval.s 𝑆 = (𝑁 ScMat 𝑅)
Assertion
Ref Expression
scmatval ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑆 = {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )})
Distinct variable groups:   𝐵,𝑚   𝐾,𝑐   𝑁,𝑐,𝑚   𝑅,𝑐,𝑚
Allowed substitution hints:   𝐴(𝑚,𝑐)   𝐵(𝑐)   𝑆(𝑚,𝑐)   · (𝑚,𝑐)   1 (𝑚,𝑐)   𝐾(𝑚)   𝑉(𝑚,𝑐)

Proof of Theorem scmatval
Dummy variables 𝑛 𝑟 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatval.s . 2 𝑆 = (𝑁 ScMat 𝑅)
2 df-scmat 21103 . . . 4 ScMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑛 Mat 𝑟) / 𝑎{𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠𝑎)(1r𝑎))})
32a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → ScMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑛 Mat 𝑟) / 𝑎{𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠𝑎)(1r𝑎))}))
4 ovexd 7194 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) → (𝑛 Mat 𝑟) ∈ V)
5 fveq2 6673 . . . . . . 7 (𝑎 = (𝑛 Mat 𝑟) → (Base‘𝑎) = (Base‘(𝑛 Mat 𝑟)))
6 fveq2 6673 . . . . . . . . . 10 (𝑎 = (𝑛 Mat 𝑟) → ( ·𝑠𝑎) = ( ·𝑠 ‘(𝑛 Mat 𝑟)))
7 eqidd 2825 . . . . . . . . . 10 (𝑎 = (𝑛 Mat 𝑟) → 𝑐 = 𝑐)
8 fveq2 6673 . . . . . . . . . 10 (𝑎 = (𝑛 Mat 𝑟) → (1r𝑎) = (1r‘(𝑛 Mat 𝑟)))
96, 7, 8oveq123d 7180 . . . . . . . . 9 (𝑎 = (𝑛 Mat 𝑟) → (𝑐( ·𝑠𝑎)(1r𝑎)) = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟))))
109eqeq2d 2835 . . . . . . . 8 (𝑎 = (𝑛 Mat 𝑟) → (𝑚 = (𝑐( ·𝑠𝑎)(1r𝑎)) ↔ 𝑚 = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟)))))
1110rexbidv 3300 . . . . . . 7 (𝑎 = (𝑛 Mat 𝑟) → (∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠𝑎)(1r𝑎)) ↔ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟)))))
125, 11rabeqbidv 3488 . . . . . 6 (𝑎 = (𝑛 Mat 𝑟) → {𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠𝑎)(1r𝑎))} = {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟)))})
1312adantl 484 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) ∧ 𝑎 = (𝑛 Mat 𝑟)) → {𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠𝑎)(1r𝑎))} = {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟)))})
144, 13csbied 3922 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) → (𝑛 Mat 𝑟) / 𝑎{𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠𝑎)(1r𝑎))} = {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟)))})
15 oveq12 7168 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅))
1615fveq2d 6677 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = (Base‘(𝑁 Mat 𝑅)))
17 scmatval.b . . . . . . . 8 𝐵 = (Base‘𝐴)
18 scmatval.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
1918fveq2i 6676 . . . . . . . 8 (Base‘𝐴) = (Base‘(𝑁 Mat 𝑅))
2017, 19eqtri 2847 . . . . . . 7 𝐵 = (Base‘(𝑁 Mat 𝑅))
2116, 20syl6eqr 2877 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = 𝐵)
22 fveq2 6673 . . . . . . . . 9 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
23 scmatval.k . . . . . . . . 9 𝐾 = (Base‘𝑅)
2422, 23syl6eqr 2877 . . . . . . . 8 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐾)
2524adantl 484 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘𝑟) = 𝐾)
2615fveq2d 6677 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → ( ·𝑠 ‘(𝑛 Mat 𝑟)) = ( ·𝑠 ‘(𝑁 Mat 𝑅)))
27 scmatval.t . . . . . . . . . . 11 · = ( ·𝑠𝐴)
2818fveq2i 6676 . . . . . . . . . . 11 ( ·𝑠𝐴) = ( ·𝑠 ‘(𝑁 Mat 𝑅))
2927, 28eqtri 2847 . . . . . . . . . 10 · = ( ·𝑠 ‘(𝑁 Mat 𝑅))
3026, 29syl6eqr 2877 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → ( ·𝑠 ‘(𝑛 Mat 𝑟)) = · )
31 eqidd 2825 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑐 = 𝑐)
3215fveq2d 6677 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → (1r‘(𝑛 Mat 𝑟)) = (1r‘(𝑁 Mat 𝑅)))
33 scmatval.1 . . . . . . . . . . 11 1 = (1r𝐴)
3418fveq2i 6676 . . . . . . . . . . 11 (1r𝐴) = (1r‘(𝑁 Mat 𝑅))
3533, 34eqtri 2847 . . . . . . . . . 10 1 = (1r‘(𝑁 Mat 𝑅))
3632, 35syl6eqr 2877 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (1r‘(𝑛 Mat 𝑟)) = 1 )
3730, 31, 36oveq123d 7180 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟))) = (𝑐 · 1 ))
3837eqeq2d 2835 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑚 = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟))) ↔ 𝑚 = (𝑐 · 1 )))
3925, 38rexeqbidv 3405 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟))) ↔ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )))
4021, 39rabeqbidv 3488 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟)))} = {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )})
4140adantl 484 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) → {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟)))} = {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )})
4214, 41eqtrd 2859 . . 3 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) → (𝑛 Mat 𝑟) / 𝑎{𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠𝑎)(1r𝑎))} = {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )})
43 simpl 485 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑁 ∈ Fin)
44 elex 3515 . . . 4 (𝑅𝑉𝑅 ∈ V)
4544adantl 484 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑅 ∈ V)
4617fvexi 6687 . . . . 5 𝐵 ∈ V
4746rabex 5238 . . . 4 {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )} ∈ V
4847a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )} ∈ V)
493, 42, 43, 45, 48ovmpod 7305 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑁 ScMat 𝑅) = {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )})
501, 49syl5eq 2871 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑆 = {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  wrex 3142  {crab 3145  Vcvv 3497  csb 3886  cfv 6358  (class class class)co 7159  cmpo 7161  Fincfn 8512  Basecbs 16486   ·𝑠 cvsca 16572  1rcur 19254   Mat cmat 21019   ScMat cscmat 21101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-iota 6317  df-fun 6360  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-scmat 21103
This theorem is referenced by:  scmatel  21117  scmatmats  21123  scmatlss  21137
  Copyright terms: Public domain W3C validator