Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sconnpi1 Structured version   Visualization version   GIF version

Theorem sconnpi1 32383
Description: A path-connected topological space is simply connected iff its fundamental group is trivial. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypothesis
Ref Expression
sconnpi1.1 𝑋 = 𝐽
Assertion
Ref Expression
sconnpi1 ((𝐽 ∈ PConn ∧ 𝑌𝑋) → (𝐽 ∈ SConn ↔ (Base‘(𝐽 π1 𝑌)) ≈ 1o))

Proof of Theorem sconnpi1
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sconntop 32372 . . . . . . . . 9 (𝐽 ∈ SConn → 𝐽 ∈ Top)
21adantl 482 . . . . . . . 8 ((𝑌𝑋𝐽 ∈ SConn) → 𝐽 ∈ Top)
3 simpl 483 . . . . . . . 8 ((𝑌𝑋𝐽 ∈ SConn) → 𝑌𝑋)
4 eqid 2818 . . . . . . . . 9 (𝐽 π1 𝑌) = (𝐽 π1 𝑌)
5 eqid 2818 . . . . . . . . 9 (Base‘(𝐽 π1 𝑌)) = (Base‘(𝐽 π1 𝑌))
6 simpl 483 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝐽 ∈ Top)
7 sconnpi1.1 . . . . . . . . . . 11 𝑋 = 𝐽
87toptopon 21453 . . . . . . . . . 10 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
96, 8sylib 219 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝐽 ∈ (TopOn‘𝑋))
10 simpr 485 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝑌𝑋)
114, 5, 9, 10elpi1 23576 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝑥 ∈ (Base‘(𝐽 π1 𝑌)) ↔ ∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝑥 = [𝑓]( ≃ph𝐽))))
122, 3, 11syl2anc 584 . . . . . . 7 ((𝑌𝑋𝐽 ∈ SConn) → (𝑥 ∈ (Base‘(𝐽 π1 𝑌)) ↔ ∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝑥 = [𝑓]( ≃ph𝐽))))
13 phtpcer 23526 . . . . . . . . . . . . 13 ( ≃ph𝐽) Er (II Cn 𝐽)
1413a1i 11 . . . . . . . . . . . 12 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → ( ≃ph𝐽) Er (II Cn 𝐽))
15 simpllr 772 . . . . . . . . . . . . . 14 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → 𝐽 ∈ SConn)
16 simplr 765 . . . . . . . . . . . . . 14 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → 𝑓 ∈ (II Cn 𝐽))
17 simprl 767 . . . . . . . . . . . . . . 15 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → (𝑓‘0) = 𝑌)
18 simprr 769 . . . . . . . . . . . . . . 15 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → (𝑓‘1) = 𝑌)
1917, 18eqtr4d 2856 . . . . . . . . . . . . . 14 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → (𝑓‘0) = (𝑓‘1))
20 sconnpht 32373 . . . . . . . . . . . . . 14 ((𝐽 ∈ SConn ∧ 𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1)) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))
2115, 16, 19, 20syl3anc 1363 . . . . . . . . . . . . 13 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))
2217sneqd 4569 . . . . . . . . . . . . . 14 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → {(𝑓‘0)} = {𝑌})
2322xpeq2d 5578 . . . . . . . . . . . . 13 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → ((0[,]1) × {(𝑓‘0)}) = ((0[,]1) × {𝑌}))
2421, 23breqtrd 5083 . . . . . . . . . . . 12 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → 𝑓( ≃ph𝐽)((0[,]1) × {𝑌}))
2514, 24erthi 8329 . . . . . . . . . . 11 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → [𝑓]( ≃ph𝐽) = [((0[,]1) × {𝑌})]( ≃ph𝐽))
262, 8sylib 219 . . . . . . . . . . . . 13 ((𝑌𝑋𝐽 ∈ SConn) → 𝐽 ∈ (TopOn‘𝑋))
27 eqid 2818 . . . . . . . . . . . . . 14 ((0[,]1) × {𝑌}) = ((0[,]1) × {𝑌})
284, 27pi1id 23582 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → [((0[,]1) × {𝑌})]( ≃ph𝐽) = (0g‘(𝐽 π1 𝑌)))
2926, 3, 28syl2anc 584 . . . . . . . . . . . 12 ((𝑌𝑋𝐽 ∈ SConn) → [((0[,]1) × {𝑌})]( ≃ph𝐽) = (0g‘(𝐽 π1 𝑌)))
3029ad2antrr 722 . . . . . . . . . . 11 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → [((0[,]1) × {𝑌})]( ≃ph𝐽) = (0g‘(𝐽 π1 𝑌)))
3125, 30eqtrd 2853 . . . . . . . . . 10 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → [𝑓]( ≃ph𝐽) = (0g‘(𝐽 π1 𝑌)))
32 velsn 4573 . . . . . . . . . . 11 (𝑥 ∈ {(0g‘(𝐽 π1 𝑌))} ↔ 𝑥 = (0g‘(𝐽 π1 𝑌)))
33 eqeq1 2822 . . . . . . . . . . 11 (𝑥 = [𝑓]( ≃ph𝐽) → (𝑥 = (0g‘(𝐽 π1 𝑌)) ↔ [𝑓]( ≃ph𝐽) = (0g‘(𝐽 π1 𝑌))))
3432, 33syl5bb 284 . . . . . . . . . 10 (𝑥 = [𝑓]( ≃ph𝐽) → (𝑥 ∈ {(0g‘(𝐽 π1 𝑌))} ↔ [𝑓]( ≃ph𝐽) = (0g‘(𝐽 π1 𝑌))))
3531, 34syl5ibrcom 248 . . . . . . . . 9 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → (𝑥 = [𝑓]( ≃ph𝐽) → 𝑥 ∈ {(0g‘(𝐽 π1 𝑌))}))
3635expimpd 454 . . . . . . . 8 (((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) → ((((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝑥 = [𝑓]( ≃ph𝐽)) → 𝑥 ∈ {(0g‘(𝐽 π1 𝑌))}))
3736rexlimdva 3281 . . . . . . 7 ((𝑌𝑋𝐽 ∈ SConn) → (∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝑥 = [𝑓]( ≃ph𝐽)) → 𝑥 ∈ {(0g‘(𝐽 π1 𝑌))}))
3812, 37sylbid 241 . . . . . 6 ((𝑌𝑋𝐽 ∈ SConn) → (𝑥 ∈ (Base‘(𝐽 π1 𝑌)) → 𝑥 ∈ {(0g‘(𝐽 π1 𝑌))}))
3938ssrdv 3970 . . . . 5 ((𝑌𝑋𝐽 ∈ SConn) → (Base‘(𝐽 π1 𝑌)) ⊆ {(0g‘(𝐽 π1 𝑌))})
404pi1grp 23581 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → (𝐽 π1 𝑌) ∈ Grp)
4126, 3, 40syl2anc 584 . . . . . . 7 ((𝑌𝑋𝐽 ∈ SConn) → (𝐽 π1 𝑌) ∈ Grp)
42 eqid 2818 . . . . . . . 8 (0g‘(𝐽 π1 𝑌)) = (0g‘(𝐽 π1 𝑌))
435, 42grpidcl 18069 . . . . . . 7 ((𝐽 π1 𝑌) ∈ Grp → (0g‘(𝐽 π1 𝑌)) ∈ (Base‘(𝐽 π1 𝑌)))
4441, 43syl 17 . . . . . 6 ((𝑌𝑋𝐽 ∈ SConn) → (0g‘(𝐽 π1 𝑌)) ∈ (Base‘(𝐽 π1 𝑌)))
4544snssd 4734 . . . . 5 ((𝑌𝑋𝐽 ∈ SConn) → {(0g‘(𝐽 π1 𝑌))} ⊆ (Base‘(𝐽 π1 𝑌)))
4639, 45eqssd 3981 . . . 4 ((𝑌𝑋𝐽 ∈ SConn) → (Base‘(𝐽 π1 𝑌)) = {(0g‘(𝐽 π1 𝑌))})
47 fvex 6676 . . . . 5 (0g‘(𝐽 π1 𝑌)) ∈ V
4847ensn1 8561 . . . 4 {(0g‘(𝐽 π1 𝑌))} ≈ 1o
4946, 48eqbrtrdi 5096 . . 3 ((𝑌𝑋𝐽 ∈ SConn) → (Base‘(𝐽 π1 𝑌)) ≈ 1o)
5049adantll 710 . 2 (((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ 𝐽 ∈ SConn) → (Base‘(𝐽 π1 𝑌)) ≈ 1o)
51 simpll 763 . . 3 (((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) → 𝐽 ∈ PConn)
52 eqid 2818 . . . . . . . . 9 (𝐽 π1 (𝑓‘0)) = (𝐽 π1 (𝑓‘0))
53 eqid 2818 . . . . . . . . 9 (Base‘(𝐽 π1 (𝑓‘0))) = (Base‘(𝐽 π1 (𝑓‘0)))
54 simplll 771 . . . . . . . . . . 11 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝐽 ∈ PConn)
55 pconntop 32369 . . . . . . . . . . 11 (𝐽 ∈ PConn → 𝐽 ∈ Top)
5654, 55syl 17 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝐽 ∈ Top)
5756, 8sylib 219 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝐽 ∈ (TopOn‘𝑋))
58 simprl 767 . . . . . . . . . . 11 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓 ∈ (II Cn 𝐽))
59 iiuni 23416 . . . . . . . . . . . 12 (0[,]1) = II
6059, 7cnf 21782 . . . . . . . . . . 11 (𝑓 ∈ (II Cn 𝐽) → 𝑓:(0[,]1)⟶𝑋)
6158, 60syl 17 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓:(0[,]1)⟶𝑋)
62 0elunit 12843 . . . . . . . . . 10 0 ∈ (0[,]1)
63 ffvelrn 6841 . . . . . . . . . 10 ((𝑓:(0[,]1)⟶𝑋 ∧ 0 ∈ (0[,]1)) → (𝑓‘0) ∈ 𝑋)
6461, 62, 63sylancl 586 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) ∈ 𝑋)
65 eqidd 2819 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) = (𝑓‘0))
66 simprr 769 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) = (𝑓‘1))
6766eqcomd 2824 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘1) = (𝑓‘0))
6852, 53, 57, 64, 58, 65, 67elpi1i 23577 . . . . . . . 8 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → [𝑓]( ≃ph𝐽) ∈ (Base‘(𝐽 π1 (𝑓‘0))))
69 eqid 2818 . . . . . . . . . . . . 13 ((0[,]1) × {(𝑓‘0)}) = ((0[,]1) × {(𝑓‘0)})
7069pcoptcl 23552 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑓‘0) ∈ 𝑋) → (((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐽) ∧ (((0[,]1) × {(𝑓‘0)})‘0) = (𝑓‘0) ∧ (((0[,]1) × {(𝑓‘0)})‘1) = (𝑓‘0)))
7157, 64, 70syl2anc 584 . . . . . . . . . . 11 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐽) ∧ (((0[,]1) × {(𝑓‘0)})‘0) = (𝑓‘0) ∧ (((0[,]1) × {(𝑓‘0)})‘1) = (𝑓‘0)))
7271simp1d 1134 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → ((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐽))
7371simp2d 1135 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (((0[,]1) × {(𝑓‘0)})‘0) = (𝑓‘0))
7471simp3d 1136 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (((0[,]1) × {(𝑓‘0)})‘1) = (𝑓‘0))
7552, 53, 57, 64, 72, 73, 74elpi1i 23577 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → [((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽) ∈ (Base‘(𝐽 π1 (𝑓‘0))))
76 simpllr 772 . . . . . . . . . . . 12 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑌𝑋)
777, 52, 4, 53, 5pconnpi1 32381 . . . . . . . . . . . 12 ((𝐽 ∈ PConn ∧ (𝑓‘0) ∈ 𝑋𝑌𝑋) → (𝐽 π1 (𝑓‘0)) ≃𝑔 (𝐽 π1 𝑌))
7854, 64, 76, 77syl3anc 1363 . . . . . . . . . . 11 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝐽 π1 (𝑓‘0)) ≃𝑔 (𝐽 π1 𝑌))
7953, 5gicen 18355 . . . . . . . . . . 11 ((𝐽 π1 (𝑓‘0)) ≃𝑔 (𝐽 π1 𝑌) → (Base‘(𝐽 π1 (𝑓‘0))) ≈ (Base‘(𝐽 π1 𝑌)))
8078, 79syl 17 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (Base‘(𝐽 π1 (𝑓‘0))) ≈ (Base‘(𝐽 π1 𝑌)))
81 simplr 765 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (Base‘(𝐽 π1 𝑌)) ≈ 1o)
82 entr 8549 . . . . . . . . . 10 (((Base‘(𝐽 π1 (𝑓‘0))) ≈ (Base‘(𝐽 π1 𝑌)) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) → (Base‘(𝐽 π1 (𝑓‘0))) ≈ 1o)
8380, 81, 82syl2anc 584 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (Base‘(𝐽 π1 (𝑓‘0))) ≈ 1o)
84 en1eqsn 8736 . . . . . . . . 9 (([((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽) ∈ (Base‘(𝐽 π1 (𝑓‘0))) ∧ (Base‘(𝐽 π1 (𝑓‘0))) ≈ 1o) → (Base‘(𝐽 π1 (𝑓‘0))) = {[((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽)})
8575, 83, 84syl2anc 584 . . . . . . . 8 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (Base‘(𝐽 π1 (𝑓‘0))) = {[((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽)})
8668, 85eleqtrd 2912 . . . . . . 7 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → [𝑓]( ≃ph𝐽) ∈ {[((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽)})
87 elsni 4574 . . . . . . 7 ([𝑓]( ≃ph𝐽) ∈ {[((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽)} → [𝑓]( ≃ph𝐽) = [((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽))
8886, 87syl 17 . . . . . 6 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → [𝑓]( ≃ph𝐽) = [((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽))
8913a1i 11 . . . . . . 7 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → ( ≃ph𝐽) Er (II Cn 𝐽))
9089, 58erth 8327 . . . . . 6 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}) ↔ [𝑓]( ≃ph𝐽) = [((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽)))
9188, 90mpbird 258 . . . . 5 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))
9291expr 457 . . . 4 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ 𝑓 ∈ (II Cn 𝐽)) → ((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)})))
9392ralrimiva 3179 . . 3 (((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) → ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)})))
94 issconn 32370 . . 3 (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))))
9551, 93, 94sylanbrc 583 . 2 (((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) → 𝐽 ∈ SConn)
9650, 95impbida 797 1 ((𝐽 ∈ PConn ∧ 𝑌𝑋) → (𝐽 ∈ SConn ↔ (Base‘(𝐽 π1 𝑌)) ≈ 1o))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wral 3135  wrex 3136  {csn 4557   cuni 4830   class class class wbr 5057   × cxp 5546  wf 6344  cfv 6348  (class class class)co 7145  1oc1o 8084   Er wer 8275  [cec 8276  cen 8494  0cc0 10525  1c1 10526  [,]cicc 12729  Basecbs 16471  0gc0g 16701  Grpcgrp 18041  𝑔 cgic 18336  Topctop 21429  TopOnctopon 21446   Cn ccn 21760  IIcii 23410  phcphtpc 23500   π1 cpi1 23534  PConncpconn 32363  SConncsconn 32364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-ec 8280  df-qs 8284  df-map 8397  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-icc 12733  df-fz 12881  df-fzo 13022  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-xrs 16763  df-qtop 16768  df-imas 16769  df-qus 16770  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-grp 18044  df-mulg 18163  df-ghm 18294  df-gim 18337  df-gic 18338  df-cntz 18385  df-cmn 18837  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cld 21555  df-cn 21763  df-cnp 21764  df-tx 22098  df-hmeo 22291  df-xms 22857  df-ms 22858  df-tms 22859  df-ii 23412  df-htpy 23501  df-phtpy 23502  df-phtpc 23523  df-pco 23536  df-om1 23537  df-pi1 23539  df-pconn 32365  df-sconn 32366
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator