MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scott0 Structured version   Visualization version   GIF version

Theorem scott0 8605
Description: Scott's trick collects all sets that have a certain property and are of the smallest possible rank. This theorem shows that the resulting collection, expressed as in Equation 9.3 of [Jech] p. 72, contains at least one representative with the property, if there is one. In other words, the collection is empty iff no set has the property (i.e. 𝐴 is empty). (Contributed by NM, 15-Oct-2003.)
Assertion
Ref Expression
scott0 (𝐴 = ∅ ↔ {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem scott0
StepHypRef Expression
1 rabeq 3161 . . 3 (𝐴 = ∅ → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∈ ∅ ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)})
2 rab0 3904 . . 3 {𝑥 ∈ ∅ ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅
31, 2syl6eq 2655 . 2 (𝐴 = ∅ → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅)
4 n0 3885 . . . . . . . 8 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
5 nfre1 2983 . . . . . . . . 9 𝑥𝑥𝐴 (rank‘𝑥) = (rank‘𝑥)
6 eqid 2605 . . . . . . . . . 10 (rank‘𝑥) = (rank‘𝑥)
7 rspe 2981 . . . . . . . . . 10 ((𝑥𝐴 ∧ (rank‘𝑥) = (rank‘𝑥)) → ∃𝑥𝐴 (rank‘𝑥) = (rank‘𝑥))
86, 7mpan2 702 . . . . . . . . 9 (𝑥𝐴 → ∃𝑥𝐴 (rank‘𝑥) = (rank‘𝑥))
95, 8exlimi 2070 . . . . . . . 8 (∃𝑥 𝑥𝐴 → ∃𝑥𝐴 (rank‘𝑥) = (rank‘𝑥))
104, 9sylbi 205 . . . . . . 7 (𝐴 ≠ ∅ → ∃𝑥𝐴 (rank‘𝑥) = (rank‘𝑥))
11 fvex 6094 . . . . . . . . . . 11 (rank‘𝑥) ∈ V
12 eqeq1 2609 . . . . . . . . . . . 12 (𝑦 = (rank‘𝑥) → (𝑦 = (rank‘𝑥) ↔ (rank‘𝑥) = (rank‘𝑥)))
1312anbi2d 735 . . . . . . . . . . 11 (𝑦 = (rank‘𝑥) → ((𝑥𝐴𝑦 = (rank‘𝑥)) ↔ (𝑥𝐴 ∧ (rank‘𝑥) = (rank‘𝑥))))
1411, 13spcev 3268 . . . . . . . . . 10 ((𝑥𝐴 ∧ (rank‘𝑥) = (rank‘𝑥)) → ∃𝑦(𝑥𝐴𝑦 = (rank‘𝑥)))
1514eximi 1750 . . . . . . . . 9 (∃𝑥(𝑥𝐴 ∧ (rank‘𝑥) = (rank‘𝑥)) → ∃𝑥𝑦(𝑥𝐴𝑦 = (rank‘𝑥)))
16 excom 2026 . . . . . . . . 9 (∃𝑦𝑥(𝑥𝐴𝑦 = (rank‘𝑥)) ↔ ∃𝑥𝑦(𝑥𝐴𝑦 = (rank‘𝑥)))
1715, 16sylibr 222 . . . . . . . 8 (∃𝑥(𝑥𝐴 ∧ (rank‘𝑥) = (rank‘𝑥)) → ∃𝑦𝑥(𝑥𝐴𝑦 = (rank‘𝑥)))
18 df-rex 2897 . . . . . . . 8 (∃𝑥𝐴 (rank‘𝑥) = (rank‘𝑥) ↔ ∃𝑥(𝑥𝐴 ∧ (rank‘𝑥) = (rank‘𝑥)))
19 df-rex 2897 . . . . . . . . 9 (∃𝑥𝐴 𝑦 = (rank‘𝑥) ↔ ∃𝑥(𝑥𝐴𝑦 = (rank‘𝑥)))
2019exbii 1762 . . . . . . . 8 (∃𝑦𝑥𝐴 𝑦 = (rank‘𝑥) ↔ ∃𝑦𝑥(𝑥𝐴𝑦 = (rank‘𝑥)))
2117, 18, 203imtr4i 279 . . . . . . 7 (∃𝑥𝐴 (rank‘𝑥) = (rank‘𝑥) → ∃𝑦𝑥𝐴 𝑦 = (rank‘𝑥))
2210, 21syl 17 . . . . . 6 (𝐴 ≠ ∅ → ∃𝑦𝑥𝐴 𝑦 = (rank‘𝑥))
23 abn0 3903 . . . . . 6 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ≠ ∅ ↔ ∃𝑦𝑥𝐴 𝑦 = (rank‘𝑥))
2422, 23sylibr 222 . . . . 5 (𝐴 ≠ ∅ → {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ≠ ∅)
2511dfiin2 4481 . . . . . 6 𝑥𝐴 (rank‘𝑥) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)}
26 rankon 8514 . . . . . . . . . 10 (rank‘𝑥) ∈ On
27 eleq1 2671 . . . . . . . . . 10 (𝑦 = (rank‘𝑥) → (𝑦 ∈ On ↔ (rank‘𝑥) ∈ On))
2826, 27mpbiri 246 . . . . . . . . 9 (𝑦 = (rank‘𝑥) → 𝑦 ∈ On)
2928rexlimivw 3006 . . . . . . . 8 (∃𝑥𝐴 𝑦 = (rank‘𝑥) → 𝑦 ∈ On)
3029abssi 3635 . . . . . . 7 {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ⊆ On
31 onint 6860 . . . . . . 7 (({𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ⊆ On ∧ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ≠ ∅) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)})
3230, 31mpan 701 . . . . . 6 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ≠ ∅ → {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)})
3325, 32syl5eqel 2687 . . . . 5 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ≠ ∅ → 𝑥𝐴 (rank‘𝑥) ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)})
34 nfii1 4477 . . . . . . . . 9 𝑥 𝑥𝐴 (rank‘𝑥)
3534nfeq2 2761 . . . . . . . 8 𝑥 𝑦 = 𝑥𝐴 (rank‘𝑥)
36 eqeq1 2609 . . . . . . . 8 (𝑦 = 𝑥𝐴 (rank‘𝑥) → (𝑦 = (rank‘𝑥) ↔ 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥)))
3735, 36rexbid 3028 . . . . . . 7 (𝑦 = 𝑥𝐴 (rank‘𝑥) → (∃𝑥𝐴 𝑦 = (rank‘𝑥) ↔ ∃𝑥𝐴 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥)))
3837elabg 3315 . . . . . 6 ( 𝑥𝐴 (rank‘𝑥) ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} → ( 𝑥𝐴 (rank‘𝑥) ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ↔ ∃𝑥𝐴 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥)))
3938ibi 254 . . . . 5 ( 𝑥𝐴 (rank‘𝑥) ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} → ∃𝑥𝐴 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥))
40 ssid 3582 . . . . . . . . . 10 (rank‘𝑦) ⊆ (rank‘𝑦)
41 fveq2 6084 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (rank‘𝑥) = (rank‘𝑦))
4241sseq1d 3590 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑦) ⊆ (rank‘𝑦)))
4342rspcev 3277 . . . . . . . . . 10 ((𝑦𝐴 ∧ (rank‘𝑦) ⊆ (rank‘𝑦)) → ∃𝑥𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
4440, 43mpan2 702 . . . . . . . . 9 (𝑦𝐴 → ∃𝑥𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
45 iinss 4497 . . . . . . . . 9 (∃𝑥𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) → 𝑥𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
4644, 45syl 17 . . . . . . . 8 (𝑦𝐴 𝑥𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
47 sseq1 3584 . . . . . . . 8 ( 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥) → ( 𝑥𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑥) ⊆ (rank‘𝑦)))
4846, 47syl5ib 232 . . . . . . 7 ( 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥) → (𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))
4948ralrimiv 2943 . . . . . 6 ( 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥) → ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
5049reximi 2989 . . . . 5 (∃𝑥𝐴 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥) → ∃𝑥𝐴𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
5124, 33, 39, 504syl 19 . . . 4 (𝐴 ≠ ∅ → ∃𝑥𝐴𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
52 rabn0 3907 . . . 4 ({𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ≠ ∅ ↔ ∃𝑥𝐴𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
5351, 52sylibr 222 . . 3 (𝐴 ≠ ∅ → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ≠ ∅)
5453necon4i 2812 . 2 ({𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅ → 𝐴 = ∅)
553, 54impbii 197 1 (𝐴 = ∅ ↔ {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 194  wa 382   = wceq 1474  wex 1694  wcel 1975  {cab 2591  wne 2775  wral 2891  wrex 2892  {crab 2895  wss 3535  c0 3869   cint 4400   ciin 4446  Oncon0 5622  cfv 5786  rankcrnk 8482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-ral 2896  df-rex 2897  df-reu 2898  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-iin 4448  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-om 6931  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-r1 8483  df-rank 8484
This theorem is referenced by:  scott0s  8607  cplem1  8608  karden  8614  scott0f  32946
  Copyright terms: Public domain W3C validator