MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scott0 Structured version   Visualization version   GIF version

Theorem scott0 8787
Description: Scott's trick collects all sets that have a certain property and are of the smallest possible rank. This theorem shows that the resulting collection, expressed as in Equation 9.3 of [Jech] p. 72, contains at least one representative with the property, if there is one. In other words, the collection is empty iff no set has the property (i.e. 𝐴 is empty). (Contributed by NM, 15-Oct-2003.)
Assertion
Ref Expression
scott0 (𝐴 = ∅ ↔ {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem scott0
StepHypRef Expression
1 rabeq 3223 . . 3 (𝐴 = ∅ → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∈ ∅ ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)})
2 rab0 3988 . . 3 {𝑥 ∈ ∅ ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅
31, 2syl6eq 2701 . 2 (𝐴 = ∅ → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅)
4 n0 3964 . . . . . . . 8 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
5 nfre1 3034 . . . . . . . . 9 𝑥𝑥𝐴 (rank‘𝑥) = (rank‘𝑥)
6 eqid 2651 . . . . . . . . . 10 (rank‘𝑥) = (rank‘𝑥)
7 rspe 3032 . . . . . . . . . 10 ((𝑥𝐴 ∧ (rank‘𝑥) = (rank‘𝑥)) → ∃𝑥𝐴 (rank‘𝑥) = (rank‘𝑥))
86, 7mpan2 707 . . . . . . . . 9 (𝑥𝐴 → ∃𝑥𝐴 (rank‘𝑥) = (rank‘𝑥))
95, 8exlimi 2124 . . . . . . . 8 (∃𝑥 𝑥𝐴 → ∃𝑥𝐴 (rank‘𝑥) = (rank‘𝑥))
104, 9sylbi 207 . . . . . . 7 (𝐴 ≠ ∅ → ∃𝑥𝐴 (rank‘𝑥) = (rank‘𝑥))
11 fvex 6239 . . . . . . . . . . 11 (rank‘𝑥) ∈ V
12 eqeq1 2655 . . . . . . . . . . . 12 (𝑦 = (rank‘𝑥) → (𝑦 = (rank‘𝑥) ↔ (rank‘𝑥) = (rank‘𝑥)))
1312anbi2d 740 . . . . . . . . . . 11 (𝑦 = (rank‘𝑥) → ((𝑥𝐴𝑦 = (rank‘𝑥)) ↔ (𝑥𝐴 ∧ (rank‘𝑥) = (rank‘𝑥))))
1411, 13spcev 3331 . . . . . . . . . 10 ((𝑥𝐴 ∧ (rank‘𝑥) = (rank‘𝑥)) → ∃𝑦(𝑥𝐴𝑦 = (rank‘𝑥)))
1514eximi 1802 . . . . . . . . 9 (∃𝑥(𝑥𝐴 ∧ (rank‘𝑥) = (rank‘𝑥)) → ∃𝑥𝑦(𝑥𝐴𝑦 = (rank‘𝑥)))
16 excom 2082 . . . . . . . . 9 (∃𝑦𝑥(𝑥𝐴𝑦 = (rank‘𝑥)) ↔ ∃𝑥𝑦(𝑥𝐴𝑦 = (rank‘𝑥)))
1715, 16sylibr 224 . . . . . . . 8 (∃𝑥(𝑥𝐴 ∧ (rank‘𝑥) = (rank‘𝑥)) → ∃𝑦𝑥(𝑥𝐴𝑦 = (rank‘𝑥)))
18 df-rex 2947 . . . . . . . 8 (∃𝑥𝐴 (rank‘𝑥) = (rank‘𝑥) ↔ ∃𝑥(𝑥𝐴 ∧ (rank‘𝑥) = (rank‘𝑥)))
19 df-rex 2947 . . . . . . . . 9 (∃𝑥𝐴 𝑦 = (rank‘𝑥) ↔ ∃𝑥(𝑥𝐴𝑦 = (rank‘𝑥)))
2019exbii 1814 . . . . . . . 8 (∃𝑦𝑥𝐴 𝑦 = (rank‘𝑥) ↔ ∃𝑦𝑥(𝑥𝐴𝑦 = (rank‘𝑥)))
2117, 18, 203imtr4i 281 . . . . . . 7 (∃𝑥𝐴 (rank‘𝑥) = (rank‘𝑥) → ∃𝑦𝑥𝐴 𝑦 = (rank‘𝑥))
2210, 21syl 17 . . . . . 6 (𝐴 ≠ ∅ → ∃𝑦𝑥𝐴 𝑦 = (rank‘𝑥))
23 abn0 3987 . . . . . 6 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ≠ ∅ ↔ ∃𝑦𝑥𝐴 𝑦 = (rank‘𝑥))
2422, 23sylibr 224 . . . . 5 (𝐴 ≠ ∅ → {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ≠ ∅)
2511dfiin2 4587 . . . . . 6 𝑥𝐴 (rank‘𝑥) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)}
26 rankon 8696 . . . . . . . . . 10 (rank‘𝑥) ∈ On
27 eleq1 2718 . . . . . . . . . 10 (𝑦 = (rank‘𝑥) → (𝑦 ∈ On ↔ (rank‘𝑥) ∈ On))
2826, 27mpbiri 248 . . . . . . . . 9 (𝑦 = (rank‘𝑥) → 𝑦 ∈ On)
2928rexlimivw 3058 . . . . . . . 8 (∃𝑥𝐴 𝑦 = (rank‘𝑥) → 𝑦 ∈ On)
3029abssi 3710 . . . . . . 7 {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ⊆ On
31 onint 7037 . . . . . . 7 (({𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ⊆ On ∧ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ≠ ∅) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)})
3230, 31mpan 706 . . . . . 6 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ≠ ∅ → {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)})
3325, 32syl5eqel 2734 . . . . 5 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ≠ ∅ → 𝑥𝐴 (rank‘𝑥) ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)})
34 nfii1 4583 . . . . . . . . 9 𝑥 𝑥𝐴 (rank‘𝑥)
3534nfeq2 2809 . . . . . . . 8 𝑥 𝑦 = 𝑥𝐴 (rank‘𝑥)
36 eqeq1 2655 . . . . . . . 8 (𝑦 = 𝑥𝐴 (rank‘𝑥) → (𝑦 = (rank‘𝑥) ↔ 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥)))
3735, 36rexbid 3080 . . . . . . 7 (𝑦 = 𝑥𝐴 (rank‘𝑥) → (∃𝑥𝐴 𝑦 = (rank‘𝑥) ↔ ∃𝑥𝐴 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥)))
3837elabg 3383 . . . . . 6 ( 𝑥𝐴 (rank‘𝑥) ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} → ( 𝑥𝐴 (rank‘𝑥) ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ↔ ∃𝑥𝐴 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥)))
3938ibi 256 . . . . 5 ( 𝑥𝐴 (rank‘𝑥) ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} → ∃𝑥𝐴 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥))
40 ssid 3657 . . . . . . . . . 10 (rank‘𝑦) ⊆ (rank‘𝑦)
41 fveq2 6229 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (rank‘𝑥) = (rank‘𝑦))
4241sseq1d 3665 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑦) ⊆ (rank‘𝑦)))
4342rspcev 3340 . . . . . . . . . 10 ((𝑦𝐴 ∧ (rank‘𝑦) ⊆ (rank‘𝑦)) → ∃𝑥𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
4440, 43mpan2 707 . . . . . . . . 9 (𝑦𝐴 → ∃𝑥𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
45 iinss 4603 . . . . . . . . 9 (∃𝑥𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) → 𝑥𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
4644, 45syl 17 . . . . . . . 8 (𝑦𝐴 𝑥𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
47 sseq1 3659 . . . . . . . 8 ( 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥) → ( 𝑥𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑥) ⊆ (rank‘𝑦)))
4846, 47syl5ib 234 . . . . . . 7 ( 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥) → (𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))
4948ralrimiv 2994 . . . . . 6 ( 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥) → ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
5049reximi 3040 . . . . 5 (∃𝑥𝐴 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥) → ∃𝑥𝐴𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
5124, 33, 39, 504syl 19 . . . 4 (𝐴 ≠ ∅ → ∃𝑥𝐴𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
52 rabn0 3991 . . . 4 ({𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ≠ ∅ ↔ ∃𝑥𝐴𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
5351, 52sylibr 224 . . 3 (𝐴 ≠ ∅ → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ≠ ∅)
5453necon4i 2858 . 2 ({𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅ → 𝐴 = ∅)
553, 54impbii 199 1 (𝐴 = ∅ ↔ {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383   = wceq 1523  wex 1744  wcel 2030  {cab 2637  wne 2823  wral 2941  wrex 2942  {crab 2945  wss 3607  c0 3948   cint 4507   ciin 4553  Oncon0 5761  cfv 5926  rankcrnk 8664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-r1 8665  df-rank 8666
This theorem is referenced by:  scott0s  8789  cplem1  8790  karden  8796  scott0f  34107
  Copyright terms: Public domain W3C validator