Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scutun12 Structured version   Visualization version   GIF version

Theorem scutun12 32042
 Description: Union law for surreal cuts. (Contributed by Scott Fenton, 9-Dec-2021.)
Assertion
Ref Expression
scutun12 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ((𝐴𝐶) |s (𝐵𝐷)) = (𝐴 |s 𝐵))

Proof of Theorem scutun12
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1081 . . . . . . 7 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → 𝐴 <<s 𝐵)
2 scutcut 32037 . . . . . . 7 (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
31, 2syl 17 . . . . . 6 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
43simp2d 1094 . . . . 5 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → 𝐴 <<s {(𝐴 |s 𝐵)})
5 simp2 1082 . . . . 5 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → 𝐶 <<s {(𝐴 |s 𝐵)})
6 ssltun1 32040 . . . . 5 ((𝐴 <<s {(𝐴 |s 𝐵)} ∧ 𝐶 <<s {(𝐴 |s 𝐵)}) → (𝐴𝐶) <<s {(𝐴 |s 𝐵)})
74, 5, 6syl2anc 694 . . . 4 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (𝐴𝐶) <<s {(𝐴 |s 𝐵)})
83simp3d 1095 . . . . 5 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → {(𝐴 |s 𝐵)} <<s 𝐵)
9 simp3 1083 . . . . 5 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → {(𝐴 |s 𝐵)} <<s 𝐷)
10 ssltun2 32041 . . . . 5 (({(𝐴 |s 𝐵)} <<s 𝐵 ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → {(𝐴 |s 𝐵)} <<s (𝐵𝐷))
118, 9, 10syl2anc 694 . . . 4 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → {(𝐴 |s 𝐵)} <<s (𝐵𝐷))
12 ovex 6718 . . . . . 6 (𝐴 |s 𝐵) ∈ V
1312snnz 4340 . . . . 5 {(𝐴 |s 𝐵)} ≠ ∅
14 sslttr 32039 . . . . 5 (((𝐴𝐶) <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s (𝐵𝐷) ∧ {(𝐴 |s 𝐵)} ≠ ∅) → (𝐴𝐶) <<s (𝐵𝐷))
1513, 14mp3an3 1453 . . . 4 (((𝐴𝐶) <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s (𝐵𝐷)) → (𝐴𝐶) <<s (𝐵𝐷))
167, 11, 15syl2anc 694 . . 3 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (𝐴𝐶) <<s (𝐵𝐷))
17 scutval 32036 . . 3 ((𝐴𝐶) <<s (𝐵𝐷) → ((𝐴𝐶) |s (𝐵𝐷)) = (𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})))
1816, 17syl 17 . 2 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ((𝐴𝐶) |s (𝐵𝐷)) = (𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})))
19 vex 3234 . . . . . . . . . 10 𝑥 ∈ V
2019elima 5506 . . . . . . . . 9 (𝑥 ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ↔ ∃𝑧 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}𝑧 bday 𝑥)
21 sneq 4220 . . . . . . . . . . . 12 (𝑦 = 𝑧 → {𝑦} = {𝑧})
2221breq2d 4697 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((𝐴𝐶) <<s {𝑦} ↔ (𝐴𝐶) <<s {𝑧}))
2321breq1d 4695 . . . . . . . . . . 11 (𝑦 = 𝑧 → ({𝑦} <<s (𝐵𝐷) ↔ {𝑧} <<s (𝐵𝐷)))
2422, 23anbi12d 747 . . . . . . . . . 10 (𝑦 = 𝑧 → (((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷)) ↔ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))))
2524rexrab 3403 . . . . . . . . 9 (∃𝑧 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}𝑧 bday 𝑥 ↔ ∃𝑧 No (((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷)) ∧ 𝑧 bday 𝑥))
2620, 25bitri 264 . . . . . . . 8 (𝑥 ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ↔ ∃𝑧 No (((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷)) ∧ 𝑧 bday 𝑥))
27 simplr 807 . . . . . . . . . . . . 13 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → 𝑧 No )
28 bdayfn 32014 . . . . . . . . . . . . . 14 bday Fn No
29 fnbrfvb 6274 . . . . . . . . . . . . . 14 (( bday Fn No 𝑧 No ) → (( bday 𝑧) = 𝑥𝑧 bday 𝑥))
3028, 29mpan 706 . . . . . . . . . . . . 13 (𝑧 No → (( bday 𝑧) = 𝑥𝑧 bday 𝑥))
3127, 30syl 17 . . . . . . . . . . . 12 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → (( bday 𝑧) = 𝑥𝑧 bday 𝑥))
32 simpll1 1120 . . . . . . . . . . . . . . 15 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → 𝐴 <<s 𝐵)
33 scutbday 32038 . . . . . . . . . . . . . . 15 (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
3432, 33syl 17 . . . . . . . . . . . . . 14 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
35 simprl 809 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → (𝐴𝐶) <<s {𝑧})
36 ssun1 3809 . . . . . . . . . . . . . . . . . . . 20 𝐴 ⊆ (𝐴𝐶)
37 sssslt1 32031 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝐶) <<s {𝑧} ∧ 𝐴 ⊆ (𝐴𝐶)) → 𝐴 <<s {𝑧})
3836, 37mpan2 707 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝐶) <<s {𝑧} → 𝐴 <<s {𝑧})
3935, 38syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → 𝐴 <<s {𝑧})
40 simprr 811 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → {𝑧} <<s (𝐵𝐷))
41 ssun1 3809 . . . . . . . . . . . . . . . . . . . 20 𝐵 ⊆ (𝐵𝐷)
42 sssslt2 32032 . . . . . . . . . . . . . . . . . . . 20 (({𝑧} <<s (𝐵𝐷) ∧ 𝐵 ⊆ (𝐵𝐷)) → {𝑧} <<s 𝐵)
4341, 42mpan2 707 . . . . . . . . . . . . . . . . . . 19 ({𝑧} <<s (𝐵𝐷) → {𝑧} <<s 𝐵)
4440, 43syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → {𝑧} <<s 𝐵)
4539, 44jca 553 . . . . . . . . . . . . . . . . 17 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → (𝐴 <<s {𝑧} ∧ {𝑧} <<s 𝐵))
4621breq2d 4697 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑧 → (𝐴 <<s {𝑦} ↔ 𝐴 <<s {𝑧}))
4721breq1d 4695 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑧 → ({𝑦} <<s 𝐵 ↔ {𝑧} <<s 𝐵))
4846, 47anbi12d 747 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ↔ (𝐴 <<s {𝑧} ∧ {𝑧} <<s 𝐵)))
4948elrab 3396 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ↔ (𝑧 No ∧ (𝐴 <<s {𝑧} ∧ {𝑧} <<s 𝐵)))
5027, 45, 49sylanbrc 699 . . . . . . . . . . . . . . . 16 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → 𝑧 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})
51 ssrab2 3720 . . . . . . . . . . . . . . . . 17 {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ⊆ No
52 fnfvima 6536 . . . . . . . . . . . . . . . . 17 (( bday Fn No ∧ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ⊆ No 𝑧 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) → ( bday 𝑧) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
5328, 51, 52mp3an12 1454 . . . . . . . . . . . . . . . 16 (𝑧 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} → ( bday 𝑧) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
5450, 53syl 17 . . . . . . . . . . . . . . 15 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → ( bday 𝑧) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
55 intss1 4524 . . . . . . . . . . . . . . 15 (( bday 𝑧) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) → ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ⊆ ( bday 𝑧))
5654, 55syl 17 . . . . . . . . . . . . . 14 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ⊆ ( bday 𝑧))
5734, 56eqsstrd 3672 . . . . . . . . . . . . 13 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → ( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday 𝑧))
58 sseq2 3660 . . . . . . . . . . . . . . 15 (( bday 𝑧) = 𝑥 → (( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday 𝑧) ↔ ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
5958biimpd 219 . . . . . . . . . . . . . 14 (( bday 𝑧) = 𝑥 → (( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday 𝑧) → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
6059com12 32 . . . . . . . . . . . . 13 (( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday 𝑧) → (( bday 𝑧) = 𝑥 → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
6157, 60syl 17 . . . . . . . . . . . 12 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → (( bday 𝑧) = 𝑥 → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
6231, 61sylbird 250 . . . . . . . . . . 11 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → (𝑧 bday 𝑥 → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
6362ex 449 . . . . . . . . . 10 (((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) → (((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷)) → (𝑧 bday 𝑥 → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥)))
6463impd 446 . . . . . . . . 9 (((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) → ((((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷)) ∧ 𝑧 bday 𝑥) → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
6564rexlimdva 3060 . . . . . . . 8 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (∃𝑧 No (((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷)) ∧ 𝑧 bday 𝑥) → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
6626, 65syl5bi 232 . . . . . . 7 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (𝑥 ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
6766ralrimiv 2994 . . . . . 6 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ∀𝑥 ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥)
68 ssint 4525 . . . . . 6 (( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ↔ ∀𝑥 ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥)
6967, 68sylibr 224 . . . . 5 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}))
703simp1d 1093 . . . . . . . 8 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (𝐴 |s 𝐵) ∈ No )
717, 11jca 553 . . . . . . . 8 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ((𝐴𝐶) <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s (𝐵𝐷)))
72 sneq 4220 . . . . . . . . . . 11 (𝑦 = (𝐴 |s 𝐵) → {𝑦} = {(𝐴 |s 𝐵)})
7372breq2d 4697 . . . . . . . . . 10 (𝑦 = (𝐴 |s 𝐵) → ((𝐴𝐶) <<s {𝑦} ↔ (𝐴𝐶) <<s {(𝐴 |s 𝐵)}))
7472breq1d 4695 . . . . . . . . . 10 (𝑦 = (𝐴 |s 𝐵) → ({𝑦} <<s (𝐵𝐷) ↔ {(𝐴 |s 𝐵)} <<s (𝐵𝐷)))
7573, 74anbi12d 747 . . . . . . . . 9 (𝑦 = (𝐴 |s 𝐵) → (((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷)) ↔ ((𝐴𝐶) <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s (𝐵𝐷))))
7675elrab 3396 . . . . . . . 8 ((𝐴 |s 𝐵) ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ↔ ((𝐴 |s 𝐵) ∈ No ∧ ((𝐴𝐶) <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s (𝐵𝐷))))
7770, 71, 76sylanbrc 699 . . . . . . 7 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (𝐴 |s 𝐵) ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})
78 ssrab2 3720 . . . . . . . 8 {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ⊆ No
79 fnfvima 6536 . . . . . . . 8 (( bday Fn No ∧ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ⊆ No ∧ (𝐴 |s 𝐵) ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}))
8028, 78, 79mp3an12 1454 . . . . . . 7 ((𝐴 |s 𝐵) ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}))
8177, 80syl 17 . . . . . 6 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}))
82 intss1 4524 . . . . . 6 (( bday ‘(𝐴 |s 𝐵)) ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) → ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ⊆ ( bday ‘(𝐴 |s 𝐵)))
8381, 82syl 17 . . . . 5 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ⊆ ( bday ‘(𝐴 |s 𝐵)))
8469, 83eqssd 3653 . . . 4 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}))
85 conway 32035 . . . . . 6 ((𝐴𝐶) <<s (𝐵𝐷) → ∃!𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}))
8616, 85syl 17 . . . . 5 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ∃!𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}))
87 fveq2 6229 . . . . . . 7 (𝑥 = (𝐴 |s 𝐵) → ( bday 𝑥) = ( bday ‘(𝐴 |s 𝐵)))
8887eqeq1d 2653 . . . . . 6 (𝑥 = (𝐴 |s 𝐵) → (( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ↔ ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})))
8988riota2 6673 . . . . 5 (((𝐴 |s 𝐵) ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ∧ ∃!𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})) → (( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ↔ (𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})) = (𝐴 |s 𝐵)))
9077, 86, 89syl2anc 694 . . . 4 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ↔ (𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})) = (𝐴 |s 𝐵)))
9184, 90mpbid 222 . . 3 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})) = (𝐴 |s 𝐵))
9291eqcomd 2657 . 2 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (𝐴 |s 𝐵) = (𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})))
9318, 92eqtr4d 2688 1 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ((𝐴𝐶) |s (𝐵𝐷)) = (𝐴 |s 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  ∀wral 2941  ∃wrex 2942  ∃!wreu 2943  {crab 2945   ∪ cun 3605   ⊆ wss 3607  ∅c0 3948  {csn 4210  ∩ cint 4507   class class class wbr 4685   “ cima 5146   Fn wfn 5921  ‘cfv 5926  ℩crio 6650  (class class class)co 6690   No csur 31918   bday cbday 31920   <
 Copyright terms: Public domain W3C validator