MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdom2en01 Structured version   Visualization version   GIF version

Theorem sdom2en01 9723
Description: A set with less than two elements has 0 or 1. (Contributed by Stefan O'Rear, 30-Oct-2014.)
Assertion
Ref Expression
sdom2en01 (𝐴 ≺ 2o ↔ (𝐴 = ∅ ∨ 𝐴 ≈ 1o))

Proof of Theorem sdom2en01
StepHypRef Expression
1 onfin2 8709 . . . . 5 ω = (On ∩ Fin)
2 inss2 4205 . . . . 5 (On ∩ Fin) ⊆ Fin
31, 2eqsstri 4000 . . . 4 ω ⊆ Fin
4 2onn 8265 . . . 4 2o ∈ ω
53, 4sselii 3963 . . 3 2o ∈ Fin
6 sdomdom 8536 . . 3 (𝐴 ≺ 2o𝐴 ≼ 2o)
7 domfi 8738 . . 3 ((2o ∈ Fin ∧ 𝐴 ≼ 2o) → 𝐴 ∈ Fin)
85, 6, 7sylancr 589 . 2 (𝐴 ≺ 2o𝐴 ∈ Fin)
9 id 22 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
10 0fin 8745 . . . 4 ∅ ∈ Fin
119, 10eqeltrdi 2921 . . 3 (𝐴 = ∅ → 𝐴 ∈ Fin)
12 1onn 8264 . . . . 5 1o ∈ ω
133, 12sselii 3963 . . . 4 1o ∈ Fin
14 enfi 8733 . . . 4 (𝐴 ≈ 1o → (𝐴 ∈ Fin ↔ 1o ∈ Fin))
1513, 14mpbiri 260 . . 3 (𝐴 ≈ 1o𝐴 ∈ Fin)
1611, 15jaoi 853 . 2 ((𝐴 = ∅ ∨ 𝐴 ≈ 1o) → 𝐴 ∈ Fin)
17 df2o3 8116 . . . . . 6 2o = {∅, 1o}
1817eleq2i 2904 . . . . 5 ((card‘𝐴) ∈ 2o ↔ (card‘𝐴) ∈ {∅, 1o})
19 fvex 6682 . . . . . 6 (card‘𝐴) ∈ V
2019elpr 4589 . . . . 5 ((card‘𝐴) ∈ {∅, 1o} ↔ ((card‘𝐴) = ∅ ∨ (card‘𝐴) = 1o))
2118, 20bitri 277 . . . 4 ((card‘𝐴) ∈ 2o ↔ ((card‘𝐴) = ∅ ∨ (card‘𝐴) = 1o))
2221a1i 11 . . 3 (𝐴 ∈ Fin → ((card‘𝐴) ∈ 2o ↔ ((card‘𝐴) = ∅ ∨ (card‘𝐴) = 1o)))
23 cardnn 9391 . . . . . 6 (2o ∈ ω → (card‘2o) = 2o)
244, 23ax-mp 5 . . . . 5 (card‘2o) = 2o
2524eleq2i 2904 . . . 4 ((card‘𝐴) ∈ (card‘2o) ↔ (card‘𝐴) ∈ 2o)
26 finnum 9376 . . . . 5 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
27 2on 8110 . . . . . 6 2o ∈ On
28 onenon 9377 . . . . . 6 (2o ∈ On → 2o ∈ dom card)
2927, 28ax-mp 5 . . . . 5 2o ∈ dom card
30 cardsdom2 9416 . . . . 5 ((𝐴 ∈ dom card ∧ 2o ∈ dom card) → ((card‘𝐴) ∈ (card‘2o) ↔ 𝐴 ≺ 2o))
3126, 29, 30sylancl 588 . . . 4 (𝐴 ∈ Fin → ((card‘𝐴) ∈ (card‘2o) ↔ 𝐴 ≺ 2o))
3225, 31syl5bbr 287 . . 3 (𝐴 ∈ Fin → ((card‘𝐴) ∈ 2o𝐴 ≺ 2o))
33 cardnueq0 9392 . . . . 5 (𝐴 ∈ dom card → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅))
3426, 33syl 17 . . . 4 (𝐴 ∈ Fin → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅))
35 cardnn 9391 . . . . . . 7 (1o ∈ ω → (card‘1o) = 1o)
3612, 35ax-mp 5 . . . . . 6 (card‘1o) = 1o
3736eqeq2i 2834 . . . . 5 ((card‘𝐴) = (card‘1o) ↔ (card‘𝐴) = 1o)
38 finnum 9376 . . . . . . 7 (1o ∈ Fin → 1o ∈ dom card)
3913, 38ax-mp 5 . . . . . 6 1o ∈ dom card
40 carden2 9415 . . . . . 6 ((𝐴 ∈ dom card ∧ 1o ∈ dom card) → ((card‘𝐴) = (card‘1o) ↔ 𝐴 ≈ 1o))
4126, 39, 40sylancl 588 . . . . 5 (𝐴 ∈ Fin → ((card‘𝐴) = (card‘1o) ↔ 𝐴 ≈ 1o))
4237, 41syl5bbr 287 . . . 4 (𝐴 ∈ Fin → ((card‘𝐴) = 1o𝐴 ≈ 1o))
4334, 42orbi12d 915 . . 3 (𝐴 ∈ Fin → (((card‘𝐴) = ∅ ∨ (card‘𝐴) = 1o) ↔ (𝐴 = ∅ ∨ 𝐴 ≈ 1o)))
4422, 32, 433bitr3d 311 . 2 (𝐴 ∈ Fin → (𝐴 ≺ 2o ↔ (𝐴 = ∅ ∨ 𝐴 ≈ 1o)))
458, 16, 44pm5.21nii 382 1 (𝐴 ≺ 2o ↔ (𝐴 = ∅ ∨ 𝐴 ≈ 1o))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wo 843   = wceq 1533  wcel 2110  cin 3934  c0 4290  {cpr 4568   class class class wbr 5065  dom cdm 5554  Oncon0 6190  cfv 6354  ωcom 7579  1oc1o 8094  2oc2o 8095  cen 8505  cdom 8506  csdm 8507  Fincfn 8508  cardccrd 9363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-om 7580  df-1o 8101  df-2o 8102  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-card 9367
This theorem is referenced by:  fin56  9814  en2top  21592
  Copyright terms: Public domain W3C validator