MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdomdomtr Structured version   Visualization version   GIF version

Theorem sdomdomtr 8638
Description: Transitivity of strict dominance and dominance. Theorem 22(iii) of [Suppes] p. 97. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
sdomdomtr ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem sdomdomtr
StepHypRef Expression
1 sdomdom 8525 . . 3 (𝐴𝐵𝐴𝐵)
2 domtr 8550 . . 3 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
31, 2sylan 580 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
4 simpl 483 . . 3 ((𝐴𝐵𝐵𝐶) → 𝐴𝐵)
5 simpr 485 . . . . . 6 ((𝐴𝐵𝐵𝐶) → 𝐵𝐶)
6 ensym 8546 . . . . . 6 (𝐴𝐶𝐶𝐴)
7 domentr 8556 . . . . . 6 ((𝐵𝐶𝐶𝐴) → 𝐵𝐴)
85, 6, 7syl2an 595 . . . . 5 (((𝐴𝐵𝐵𝐶) ∧ 𝐴𝐶) → 𝐵𝐴)
9 domnsym 8631 . . . . 5 (𝐵𝐴 → ¬ 𝐴𝐵)
108, 9syl 17 . . . 4 (((𝐴𝐵𝐵𝐶) ∧ 𝐴𝐶) → ¬ 𝐴𝐵)
1110ex 413 . . 3 ((𝐴𝐵𝐵𝐶) → (𝐴𝐶 → ¬ 𝐴𝐵))
124, 11mt2d 138 . 2 ((𝐴𝐵𝐵𝐶) → ¬ 𝐴𝐶)
13 brsdom 8520 . 2 (𝐴𝐶 ↔ (𝐴𝐶 ∧ ¬ 𝐴𝐶))
143, 12, 13sylanbrc 583 1 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   class class class wbr 5057  cen 8494  cdom 8495  csdm 8496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500
This theorem is referenced by:  sdomentr  8639  sucdom  8703  infsdomnn  8767  fodomfib  8786  marypha1lem  8885  r1sdom  9191  infxpenlem  9427  infunsdom1  9623  fin56  9803  fodomb  9936  pwcfsdom  9993  cfpwsdom  9994  canthp1lem2  10063  gchpwdom  10080  gchhar  10089  gchina  10109  tsksdom  10166  tskpr  10180  tskcard  10191  gruina  10228  domalom  34567  lindsenlbs  34768
  Copyright terms: Public domain W3C validator