MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdomtr Structured version   Visualization version   GIF version

Theorem sdomtr 7956
Description: Strict dominance is transitive. Theorem 21(iii) of [Suppes] p. 97. (Contributed by NM, 9-Jun-1998.)
Assertion
Ref Expression
sdomtr ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem sdomtr
StepHypRef Expression
1 sdomdom 7842 . 2 (𝐴𝐵𝐴𝐵)
2 domsdomtr 7953 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
31, 2sylan 486 1 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   class class class wbr 4573  cdom 7812  csdm 7813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ral 2896  df-rex 2897  df-rab 2900  df-v 3170  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-op 4127  df-uni 4363  df-br 4574  df-opab 4634  df-id 4939  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-er 7602  df-en 7815  df-dom 7816  df-sdom 7817
This theorem is referenced by:  sdomn2lp  7957  2pwuninel  7973  2pwne  7974  r1sdom  8493  alephordi  8753  pwsdompw  8882  gruina  9492  rexpen  14738
  Copyright terms: Public domain W3C validator