MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sectco Structured version   Visualization version   GIF version

Theorem sectco 17020
Description: Composition of two sections. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
sectco.b 𝐵 = (Base‘𝐶)
sectco.o · = (comp‘𝐶)
sectco.s 𝑆 = (Sect‘𝐶)
sectco.c (𝜑𝐶 ∈ Cat)
sectco.x (𝜑𝑋𝐵)
sectco.y (𝜑𝑌𝐵)
sectco.z (𝜑𝑍𝐵)
sectco.1 (𝜑𝐹(𝑋𝑆𝑌)𝐺)
sectco.2 (𝜑𝐻(𝑌𝑆𝑍)𝐾)
Assertion
Ref Expression
sectco (𝜑 → (𝐻(⟨𝑋, 𝑌· 𝑍)𝐹)(𝑋𝑆𝑍)(𝐺(⟨𝑍, 𝑌· 𝑋)𝐾))

Proof of Theorem sectco
StepHypRef Expression
1 sectco.b . . . 4 𝐵 = (Base‘𝐶)
2 eqid 2821 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
3 sectco.o . . . 4 · = (comp‘𝐶)
4 sectco.c . . . 4 (𝜑𝐶 ∈ Cat)
5 sectco.x . . . 4 (𝜑𝑋𝐵)
6 sectco.z . . . 4 (𝜑𝑍𝐵)
7 sectco.y . . . 4 (𝜑𝑌𝐵)
8 sectco.1 . . . . . . 7 (𝜑𝐹(𝑋𝑆𝑌)𝐺)
9 eqid 2821 . . . . . . . 8 (Id‘𝐶) = (Id‘𝐶)
10 sectco.s . . . . . . . 8 𝑆 = (Sect‘𝐶)
111, 2, 3, 9, 10, 4, 5, 7issect 17017 . . . . . . 7 (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ((Id‘𝐶)‘𝑋))))
128, 11mpbid 234 . . . . . 6 (𝜑 → (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))
1312simp1d 1138 . . . . 5 (𝜑𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
14 sectco.2 . . . . . . 7 (𝜑𝐻(𝑌𝑆𝑍)𝐾)
151, 2, 3, 9, 10, 4, 7, 6issect 17017 . . . . . . 7 (𝜑 → (𝐻(𝑌𝑆𝑍)𝐾 ↔ (𝐻 ∈ (𝑌(Hom ‘𝐶)𝑍) ∧ 𝐾 ∈ (𝑍(Hom ‘𝐶)𝑌) ∧ (𝐾(⟨𝑌, 𝑍· 𝑌)𝐻) = ((Id‘𝐶)‘𝑌))))
1614, 15mpbid 234 . . . . . 6 (𝜑 → (𝐻 ∈ (𝑌(Hom ‘𝐶)𝑍) ∧ 𝐾 ∈ (𝑍(Hom ‘𝐶)𝑌) ∧ (𝐾(⟨𝑌, 𝑍· 𝑌)𝐻) = ((Id‘𝐶)‘𝑌)))
1716simp1d 1138 . . . . 5 (𝜑𝐻 ∈ (𝑌(Hom ‘𝐶)𝑍))
181, 2, 3, 4, 5, 7, 6, 13, 17catcocl 16950 . . . 4 (𝜑 → (𝐻(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋(Hom ‘𝐶)𝑍))
1916simp2d 1139 . . . 4 (𝜑𝐾 ∈ (𝑍(Hom ‘𝐶)𝑌))
2012simp2d 1139 . . . 4 (𝜑𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋))
211, 2, 3, 4, 5, 6, 7, 18, 19, 5, 20catass 16951 . . 3 (𝜑 → ((𝐺(⟨𝑍, 𝑌· 𝑋)𝐾)(⟨𝑋, 𝑍· 𝑋)(𝐻(⟨𝑋, 𝑌· 𝑍)𝐹)) = (𝐺(⟨𝑋, 𝑌· 𝑋)(𝐾(⟨𝑋, 𝑍· 𝑌)(𝐻(⟨𝑋, 𝑌· 𝑍)𝐹))))
2216simp3d 1140 . . . . . 6 (𝜑 → (𝐾(⟨𝑌, 𝑍· 𝑌)𝐻) = ((Id‘𝐶)‘𝑌))
2322oveq1d 7165 . . . . 5 (𝜑 → ((𝐾(⟨𝑌, 𝑍· 𝑌)𝐻)(⟨𝑋, 𝑌· 𝑌)𝐹) = (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌· 𝑌)𝐹))
241, 2, 3, 4, 5, 7, 6, 13, 17, 7, 19catass 16951 . . . . 5 (𝜑 → ((𝐾(⟨𝑌, 𝑍· 𝑌)𝐻)(⟨𝑋, 𝑌· 𝑌)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑌)(𝐻(⟨𝑋, 𝑌· 𝑍)𝐹)))
251, 2, 9, 4, 5, 3, 7, 13catlid 16948 . . . . 5 (𝜑 → (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌· 𝑌)𝐹) = 𝐹)
2623, 24, 253eqtr3d 2864 . . . 4 (𝜑 → (𝐾(⟨𝑋, 𝑍· 𝑌)(𝐻(⟨𝑋, 𝑌· 𝑍)𝐹)) = 𝐹)
2726oveq2d 7166 . . 3 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑋)(𝐾(⟨𝑋, 𝑍· 𝑌)(𝐻(⟨𝑋, 𝑌· 𝑍)𝐹))) = (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹))
2812simp3d 1140 . . 3 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ((Id‘𝐶)‘𝑋))
2921, 27, 283eqtrd 2860 . 2 (𝜑 → ((𝐺(⟨𝑍, 𝑌· 𝑋)𝐾)(⟨𝑋, 𝑍· 𝑋)(𝐻(⟨𝑋, 𝑌· 𝑍)𝐹)) = ((Id‘𝐶)‘𝑋))
301, 2, 3, 4, 6, 7, 5, 19, 20catcocl 16950 . . 3 (𝜑 → (𝐺(⟨𝑍, 𝑌· 𝑋)𝐾) ∈ (𝑍(Hom ‘𝐶)𝑋))
311, 2, 3, 9, 10, 4, 5, 6, 18, 30issect2 17018 . 2 (𝜑 → ((𝐻(⟨𝑋, 𝑌· 𝑍)𝐹)(𝑋𝑆𝑍)(𝐺(⟨𝑍, 𝑌· 𝑋)𝐾) ↔ ((𝐺(⟨𝑍, 𝑌· 𝑋)𝐾)(⟨𝑋, 𝑍· 𝑋)(𝐻(⟨𝑋, 𝑌· 𝑍)𝐹)) = ((Id‘𝐶)‘𝑋)))
3229, 31mpbird 259 1 (𝜑 → (𝐻(⟨𝑋, 𝑌· 𝑍)𝐹)(𝑋𝑆𝑍)(𝐺(⟨𝑍, 𝑌· 𝑋)𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1533  wcel 2110  cop 4566   class class class wbr 5058  cfv 6349  (class class class)co 7150  Basecbs 16477  Hom chom 16570  compcco 16571  Catccat 16929  Idccid 16930  Sectcsect 17008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-cat 16933  df-cid 16934  df-sect 17011
This theorem is referenced by:  invco  17035
  Copyright terms: Public domain W3C validator