MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seeq2 Structured version   Visualization version   GIF version

Theorem seeq2 5077
Description: Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
seeq2 (𝐴 = 𝐵 → (𝑅 Se 𝐴𝑅 Se 𝐵))

Proof of Theorem seeq2
StepHypRef Expression
1 eqimss2 3650 . . 3 (𝐴 = 𝐵𝐵𝐴)
2 sess2 5073 . . 3 (𝐵𝐴 → (𝑅 Se 𝐴𝑅 Se 𝐵))
31, 2syl 17 . 2 (𝐴 = 𝐵 → (𝑅 Se 𝐴𝑅 Se 𝐵))
4 eqimss 3649 . . 3 (𝐴 = 𝐵𝐴𝐵)
5 sess2 5073 . . 3 (𝐴𝐵 → (𝑅 Se 𝐵𝑅 Se 𝐴))
64, 5syl 17 . 2 (𝐴 = 𝐵 → (𝑅 Se 𝐵𝑅 Se 𝐴))
73, 6impbid 202 1 (𝐴 = 𝐵 → (𝑅 Se 𝐴𝑅 Se 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1481  wss 3567   Se wse 5061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ral 2914  df-rab 2918  df-v 3197  df-in 3574  df-ss 3581  df-se 5064
This theorem is referenced by:  oieq2  8403
  Copyright terms: Public domain W3C validator