MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seex Structured version   Visualization version   GIF version

Theorem seex 5106
Description: The 𝑅-preimage of an element of the base set in a set-like relation is a set. (Contributed by Mario Carneiro, 19-Nov-2014.)
Assertion
Ref Expression
seex ((𝑅 Se 𝐴𝐵𝐴) → {𝑥𝐴𝑥𝑅𝐵} ∈ V)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅

Proof of Theorem seex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-se 5103 . 2 (𝑅 Se 𝐴 ↔ ∀𝑦𝐴 {𝑥𝐴𝑥𝑅𝑦} ∈ V)
2 breq2 4689 . . . . 5 (𝑦 = 𝐵 → (𝑥𝑅𝑦𝑥𝑅𝐵))
32rabbidv 3220 . . . 4 (𝑦 = 𝐵 → {𝑥𝐴𝑥𝑅𝑦} = {𝑥𝐴𝑥𝑅𝐵})
43eleq1d 2715 . . 3 (𝑦 = 𝐵 → ({𝑥𝐴𝑥𝑅𝑦} ∈ V ↔ {𝑥𝐴𝑥𝑅𝐵} ∈ V))
54rspccva 3339 . 2 ((∀𝑦𝐴 {𝑥𝐴𝑥𝑅𝑦} ∈ V ∧ 𝐵𝐴) → {𝑥𝐴𝑥𝑅𝐵} ∈ V)
61, 5sylanb 488 1 ((𝑅 Se 𝐴𝐵𝐴) → {𝑥𝐴𝑥𝑅𝐵} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  wral 2941  {crab 2945  Vcvv 3231   class class class wbr 4685   Se wse 5100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-se 5103
This theorem is referenced by:  wereu2  5140  setlikespec  5739  fnse  7339  ordtypelem10  8473  frpomin  31863
  Copyright terms: Public domain W3C validator