MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg3lem2 Structured version   Visualization version   GIF version

Theorem selberg3lem2 24964
Description: Lemma for selberg3 24965. Equation 10.4.21 of [Shapiro], p. 422. (Contributed by Mario Carneiro, 30-May-2016.)
Assertion
Ref Expression
selberg3lem2 (𝑥 ∈ (1(,)+∞) ↦ ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ∈ 𝑂(1)
Distinct variable group:   𝑥,𝑛

Proof of Theorem selberg3lem2
Dummy variables 𝑚 𝑐 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1re 9895 . . . . . . . 8 1 ∈ ℝ
2 elicopnf 12096 . . . . . . . 8 (1 ∈ ℝ → (𝑦 ∈ (1[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)))
31, 2ax-mp 5 . . . . . . 7 (𝑦 ∈ (1[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦))
43simplbi 474 . . . . . 6 (𝑦 ∈ (1[,)+∞) → 𝑦 ∈ ℝ)
54ssriv 3571 . . . . 5 (1[,)+∞) ⊆ ℝ
65a1i 11 . . . 4 (⊤ → (1[,)+∞) ⊆ ℝ)
71a1i 11 . . . 4 (⊤ → 1 ∈ ℝ)
8 fzfid 12589 . . . . . . . 8 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → (1...(⌊‘𝑦)) ∈ Fin)
9 elfznn 12196 . . . . . . . . . . 11 (𝑚 ∈ (1...(⌊‘𝑦)) → 𝑚 ∈ ℕ)
109adantl 480 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → 𝑚 ∈ ℕ)
11 vmacl 24561 . . . . . . . . . 10 (𝑚 ∈ ℕ → (Λ‘𝑚) ∈ ℝ)
1210, 11syl 17 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → (Λ‘𝑚) ∈ ℝ)
1310nnrpd 11702 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → 𝑚 ∈ ℝ+)
1413relogcld 24090 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → (log‘𝑚) ∈ ℝ)
1512, 14remulcld 9926 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
168, 15fsumrecl 14258 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
174adantl 480 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → 𝑦 ∈ ℝ)
18 chpcl 24567 . . . . . . . . 9 (𝑦 ∈ ℝ → (ψ‘𝑦) ∈ ℝ)
1917, 18syl 17 . . . . . . . 8 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → (ψ‘𝑦) ∈ ℝ)
20 1rp 11668 . . . . . . . . . . 11 1 ∈ ℝ+
2120a1i 11 . . . . . . . . . 10 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → 1 ∈ ℝ+)
223simprbi 478 . . . . . . . . . . 11 (𝑦 ∈ (1[,)+∞) → 1 ≤ 𝑦)
2322adantl 480 . . . . . . . . . 10 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ 𝑦)
2417, 21, 23rpgecld 11743 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → 𝑦 ∈ ℝ+)
2524relogcld 24090 . . . . . . . 8 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → (log‘𝑦) ∈ ℝ)
2619, 25remulcld 9926 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → ((ψ‘𝑦) · (log‘𝑦)) ∈ ℝ)
2716, 26resubcld 10309 . . . . . 6 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → (Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) ∈ ℝ)
2827, 24rerpdivcld 11735 . . . . 5 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → ((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦) ∈ ℝ)
2928recnd 9924 . . . 4 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → ((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦) ∈ ℂ)
3024ex 448 . . . . . 6 (⊤ → (𝑦 ∈ (1[,)+∞) → 𝑦 ∈ ℝ+))
3130ssrdv 3573 . . . . 5 (⊤ → (1[,)+∞) ⊆ ℝ+)
32 selberg2lem 24956 . . . . . 6 (𝑦 ∈ ℝ+ ↦ ((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ∈ 𝑂(1)
3332a1i 11 . . . . 5 (⊤ → (𝑦 ∈ ℝ+ ↦ ((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ∈ 𝑂(1))
3431, 33o1res2 14088 . . . 4 (⊤ → (𝑦 ∈ (1[,)+∞) ↦ ((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ∈ 𝑂(1))
35 fzfid 12589 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
36 elfznn 12196 . . . . . . . . 9 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℕ)
3736adantl 480 . . . . . . . 8 (((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℕ)
3837, 11syl 17 . . . . . . 7 (((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑚) ∈ ℝ)
3937nnrpd 11702 . . . . . . . 8 (((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℝ+)
4039relogcld 24090 . . . . . . 7 (((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (log‘𝑚) ∈ ℝ)
4138, 40remulcld 9926 . . . . . 6 (((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
4235, 41fsumrecl 14258 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
43 chpcl 24567 . . . . . . 7 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
4443ad2antrl 759 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → (ψ‘𝑥) ∈ ℝ)
45 simprl 789 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ)
4620a1i 11 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → 1 ∈ ℝ+)
47 simprr 791 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
4845, 46, 47rpgecld 11743 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
4948relogcld 24090 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℝ)
5044, 49remulcld 9926 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → ((ψ‘𝑥) · (log‘𝑥)) ∈ ℝ)
5142, 50readdcld 9925 . . . 4 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑥) · (log‘𝑥))) ∈ ℝ)
5227adantr 479 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) ∈ ℝ)
5352recnd 9924 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) ∈ ℂ)
5424adantr 479 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑦 ∈ ℝ+)
5554rpcnd 11706 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑦 ∈ ℂ)
5654rpne0d 11709 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑦 ≠ 0)
5753, 55, 56absdivd 13988 . . . . . 6 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) = ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / (abs‘𝑦)))
5817adantr 479 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑦 ∈ ℝ)
5954rpge0d 11708 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 0 ≤ 𝑦)
6058, 59absidd 13955 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘𝑦) = 𝑦)
6160oveq2d 6543 . . . . . 6 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / (abs‘𝑦)) = ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 𝑦))
6257, 61eqtrd 2643 . . . . 5 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) = ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 𝑦))
6353abscld 13969 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) ∈ ℝ)
6463, 54rerpdivcld 11735 . . . . . 6 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 𝑦) ∈ ℝ)
6542ad2ant2r 778 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
66 simprll 797 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑥 ∈ ℝ)
6766, 43syl 17 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (ψ‘𝑥) ∈ ℝ)
68 simprr 791 . . . . . . . . . . 11 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑦 < 𝑥)
6958, 66, 68ltled 10036 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑦𝑥)
7066, 54, 69rpgecld 11743 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑥 ∈ ℝ+)
7170relogcld 24090 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (log‘𝑥) ∈ ℝ)
7267, 71remulcld 9926 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((ψ‘𝑥) · (log‘𝑥)) ∈ ℝ)
7365, 72readdcld 9925 . . . . . 6 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑥) · (log‘𝑥))) ∈ ℝ)
7420a1i 11 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 1 ∈ ℝ+)
7553absge0d 13977 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 0 ≤ (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))))
7623adantr 479 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 1 ≤ 𝑦)
7774, 54, 63, 75, 76lediv2ad 11726 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 𝑦) ≤ ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 1))
7863recnd 9924 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) ∈ ℂ)
7978div1d 10642 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 1) = (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))))
8077, 79breqtrd 4603 . . . . . 6 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 𝑦) ≤ (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))))
8116adantr 479 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
8258, 18syl 17 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (ψ‘𝑦) ∈ ℝ)
8354relogcld 24090 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (log‘𝑦) ∈ ℝ)
8482, 83remulcld 9926 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((ψ‘𝑦) · (log‘𝑦)) ∈ ℝ)
8581, 84readdcld 9925 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑦) · (log‘𝑦))) ∈ ℝ)
8681recnd 9924 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) ∈ ℂ)
8726adantr 479 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((ψ‘𝑦) · (log‘𝑦)) ∈ ℝ)
8887recnd 9924 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((ψ‘𝑦) · (log‘𝑦)) ∈ ℂ)
8986, 88abs2dif2d 13991 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) ≤ ((abs‘Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚))) + (abs‘((ψ‘𝑦) · (log‘𝑦)))))
90 vmage0 24564 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → 0 ≤ (Λ‘𝑚))
9110, 90syl 17 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → 0 ≤ (Λ‘𝑚))
9210nnred 10882 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → 𝑚 ∈ ℝ)
9310nnge1d 10910 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → 1 ≤ 𝑚)
9492, 93logge0d 24097 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → 0 ≤ (log‘𝑚))
9512, 14, 91, 94mulge0d 10453 . . . . . . . . . . . 12 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → 0 ≤ ((Λ‘𝑚) · (log‘𝑚)))
968, 15, 95fsumge0 14314 . . . . . . . . . . 11 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → 0 ≤ Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)))
9796adantr 479 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 0 ≤ Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)))
9881, 97absidd 13955 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚))) = Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)))
99 chpge0 24569 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 0 ≤ (ψ‘𝑦))
10058, 99syl 17 . . . . . . . . . . 11 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 0 ≤ (ψ‘𝑦))
10158, 76logge0d 24097 . . . . . . . . . . 11 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 0 ≤ (log‘𝑦))
10282, 83, 100, 101mulge0d 10453 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 0 ≤ ((ψ‘𝑦) · (log‘𝑦)))
10387, 102absidd 13955 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘((ψ‘𝑦) · (log‘𝑦))) = ((ψ‘𝑦) · (log‘𝑦)))
10498, 103oveq12d 6545 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((abs‘Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚))) + (abs‘((ψ‘𝑦) · (log‘𝑦)))) = (Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑦) · (log‘𝑦))))
10589, 104breqtrd 4603 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) ≤ (Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑦) · (log‘𝑦))))
106 fzfid 12589 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
10736adantl 480 . . . . . . . . . . 11 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℕ)
108107, 11syl 17 . . . . . . . . . 10 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑚) ∈ ℝ)
109107nnrpd 11702 . . . . . . . . . . 11 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℝ+)
110109relogcld 24090 . . . . . . . . . 10 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (log‘𝑚) ∈ ℝ)
111108, 110remulcld 9926 . . . . . . . . 9 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
112107, 90syl 17 . . . . . . . . . 10 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 0 ≤ (Λ‘𝑚))
113107nnred 10882 . . . . . . . . . . 11 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℝ)
114107nnge1d 10910 . . . . . . . . . . 11 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 1 ≤ 𝑚)
115113, 114logge0d 24097 . . . . . . . . . 10 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 0 ≤ (log‘𝑚))
116108, 110, 112, 115mulge0d 10453 . . . . . . . . 9 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((Λ‘𝑚) · (log‘𝑚)))
117 flword2 12431 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦𝑥) → (⌊‘𝑥) ∈ (ℤ‘(⌊‘𝑦)))
11858, 66, 69, 117syl3anc 1317 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (⌊‘𝑥) ∈ (ℤ‘(⌊‘𝑦)))
119 fzss2 12207 . . . . . . . . . 10 ((⌊‘𝑥) ∈ (ℤ‘(⌊‘𝑦)) → (1...(⌊‘𝑦)) ⊆ (1...(⌊‘𝑥)))
120118, 119syl 17 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (1...(⌊‘𝑦)) ⊆ (1...(⌊‘𝑥)))
121106, 111, 116, 120fsumless 14315 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) ≤ Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)))
122 chpwordi 24600 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦𝑥) → (ψ‘𝑦) ≤ (ψ‘𝑥))
12358, 66, 69, 122syl3anc 1317 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (ψ‘𝑦) ≤ (ψ‘𝑥))
12454, 70logled 24094 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (𝑦𝑥 ↔ (log‘𝑦) ≤ (log‘𝑥)))
12569, 124mpbid 220 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (log‘𝑦) ≤ (log‘𝑥))
12682, 67, 83, 71, 100, 101, 123, 125lemul12ad 10815 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((ψ‘𝑦) · (log‘𝑦)) ≤ ((ψ‘𝑥) · (log‘𝑥)))
12781, 84, 65, 72, 121, 126le2addd 10495 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑦) · (log‘𝑦))) ≤ (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑥) · (log‘𝑥))))
12863, 85, 73, 105, 127letrd 10045 . . . . . 6 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) ≤ (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑥) · (log‘𝑥))))
12964, 63, 73, 80, 128letrd 10045 . . . . 5 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 𝑦) ≤ (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑥) · (log‘𝑥))))
13062, 129eqbrtrd 4599 . . . 4 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑥) · (log‘𝑥))))
1316, 7, 29, 34, 51, 130o1bddrp 14067 . . 3 (⊤ → ∃𝑐 ∈ ℝ+𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝑐)
132131trud 1483 . 2 𝑐 ∈ ℝ+𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝑐
133 simpl 471 . . . 4 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝑐) → 𝑐 ∈ ℝ+)
134 simpr 475 . . . 4 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝑐) → ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝑐)
135133, 134selberg3lem1 24963 . . 3 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝑐) → (𝑥 ∈ (1(,)+∞) ↦ ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ∈ 𝑂(1))
136135rexlimiva 3009 . 2 (∃𝑐 ∈ ℝ+𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝑐 → (𝑥 ∈ (1(,)+∞) ↦ ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ∈ 𝑂(1))
137132, 136ax-mp 5 1 (𝑥 ∈ (1(,)+∞) ↦ ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wb 194  wa 382  wtru 1475  wcel 1976  wral 2895  wrex 2896  wss 3539   class class class wbr 4577  cmpt 4637  cfv 5790  (class class class)co 6527  cr 9791  0cc0 9792  1c1 9793   + caddc 9795   · cmul 9797  +∞cpnf 9927   < clt 9930  cle 9931  cmin 10117   / cdiv 10533  cn 10867  2c2 10917  cuz 11519  +crp 11664  (,)cioo 12002  [,)cico 12004  ...cfz 12152  cfl 12408  abscabs 13768  𝑂(1)co1 14011  Σcsu 14210  logclog 24022  Λcvma 24535  ψcchp 24536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-addf 9871  ax-mulf 9872
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-fi 8177  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-9 10933  df-n0 11140  df-z 11211  df-dec 11326  df-uz 11520  df-q 11621  df-rp 11665  df-xneg 11778  df-xadd 11779  df-xmul 11780  df-ioo 12006  df-ioc 12007  df-ico 12008  df-icc 12009  df-fz 12153  df-fzo 12290  df-fl 12410  df-mod 12486  df-seq 12619  df-exp 12678  df-fac 12878  df-bc 12907  df-hash 12935  df-shft 13601  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-limsup 13996  df-clim 14013  df-rlim 14014  df-o1 14015  df-lo1 14016  df-sum 14211  df-ef 14583  df-e 14584  df-sin 14585  df-cos 14586  df-pi 14588  df-dvds 14768  df-gcd 15001  df-prm 15170  df-pc 15326  df-struct 15643  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-ress 15648  df-plusg 15727  df-mulr 15728  df-starv 15729  df-sca 15730  df-vsca 15731  df-ip 15732  df-tset 15733  df-ple 15734  df-ds 15737  df-unif 15738  df-hom 15739  df-cco 15740  df-rest 15852  df-topn 15853  df-0g 15871  df-gsum 15872  df-topgen 15873  df-pt 15874  df-prds 15877  df-xrs 15931  df-qtop 15936  df-imas 15937  df-xps 15939  df-mre 16015  df-mrc 16016  df-acs 16018  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-submnd 17105  df-mulg 17310  df-cntz 17519  df-cmn 17964  df-psmet 19505  df-xmet 19506  df-met 19507  df-bl 19508  df-mopn 19509  df-fbas 19510  df-fg 19511  df-cnfld 19514  df-top 20463  df-bases 20464  df-topon 20465  df-topsp 20466  df-cld 20575  df-ntr 20576  df-cls 20577  df-nei 20654  df-lp 20692  df-perf 20693  df-cn 20783  df-cnp 20784  df-haus 20871  df-cmp 20942  df-tx 21117  df-hmeo 21310  df-fil 21402  df-fm 21494  df-flim 21495  df-flf 21496  df-xms 21876  df-ms 21877  df-tms 21878  df-cncf 22420  df-limc 23353  df-dv 23354  df-log 24024  df-cxp 24025  df-cht 24540  df-vma 24541  df-chp 24542  df-ppi 24543
This theorem is referenced by:  selberg3  24965  selberg4  24967
  Copyright terms: Public domain W3C validator