MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberglem3 Structured version   Visualization version   GIF version

Theorem selberglem3 25153
Description: Lemma for selberg 25154. Estimation of the left-hand side of logsqvma2 25149. (Contributed by Mario Carneiro, 23-May-2016.)
Assertion
Ref Expression
selberglem3 (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
Distinct variable group:   𝑛,𝑑,𝑥,𝑦

Proof of Theorem selberglem3
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 oveq1 6617 . . . . . . . . . 10 (𝑛 = (𝑑 · 𝑚) → (𝑛 / 𝑑) = ((𝑑 · 𝑚) / 𝑑))
21fveq2d 6157 . . . . . . . . 9 (𝑛 = (𝑑 · 𝑚) → (log‘(𝑛 / 𝑑)) = (log‘((𝑑 · 𝑚) / 𝑑)))
32oveq1d 6625 . . . . . . . 8 (𝑛 = (𝑑 · 𝑚) → ((log‘(𝑛 / 𝑑))↑2) = ((log‘((𝑑 · 𝑚) / 𝑑))↑2))
43oveq2d 6626 . . . . . . 7 (𝑛 = (𝑑 · 𝑚) → ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) = ((μ‘𝑑) · ((log‘((𝑑 · 𝑚) / 𝑑))↑2)))
5 rpre 11791 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
6 ssrab2 3671 . . . . . . . . . . 11 {𝑦 ∈ ℕ ∣ 𝑦𝑛} ⊆ ℕ
7 simprr 795 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})
86, 7sseldi 3585 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → 𝑑 ∈ ℕ)
9 mucl 24784 . . . . . . . . . 10 (𝑑 ∈ ℕ → (μ‘𝑑) ∈ ℤ)
108, 9syl 17 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → (μ‘𝑑) ∈ ℤ)
1110zcnd 11435 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → (μ‘𝑑) ∈ ℂ)
12 elfznn 12320 . . . . . . . . . . . . 13 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
1312nnrpd 11822 . . . . . . . . . . . 12 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℝ+)
1413ad2antrl 763 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → 𝑛 ∈ ℝ+)
158nnrpd 11822 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → 𝑑 ∈ ℝ+)
1614, 15rpdivcld 11841 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → (𝑛 / 𝑑) ∈ ℝ+)
17 relogcl 24243 . . . . . . . . . . 11 ((𝑛 / 𝑑) ∈ ℝ+ → (log‘(𝑛 / 𝑑)) ∈ ℝ)
1817recnd 10020 . . . . . . . . . 10 ((𝑛 / 𝑑) ∈ ℝ+ → (log‘(𝑛 / 𝑑)) ∈ ℂ)
1916, 18syl 17 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → (log‘(𝑛 / 𝑑)) ∈ ℂ)
2019sqcld 12954 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → ((log‘(𝑛 / 𝑑))↑2) ∈ ℂ)
2111, 20mulcld 10012 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) ∈ ℂ)
224, 5, 21dvdsflsumcom 24831 . . . . . 6 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘((𝑑 · 𝑚) / 𝑑))↑2)))
23 elfznn 12320 . . . . . . . . . . . . 13 (𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑))) → 𝑚 ∈ ℕ)
24233ad2ant3 1082 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑚 ∈ ℕ)
2524nncnd 10988 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑚 ∈ ℂ)
26 elfznn 12320 . . . . . . . . . . . . 13 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℕ)
27263ad2ant2 1081 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑑 ∈ ℕ)
2827nncnd 10988 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑑 ∈ ℂ)
2927nnne0d 11017 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑑 ≠ 0)
3025, 28, 29divcan3d 10758 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((𝑑 · 𝑚) / 𝑑) = 𝑚)
3130fveq2d 6157 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (log‘((𝑑 · 𝑚) / 𝑑)) = (log‘𝑚))
3231oveq1d 6625 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((log‘((𝑑 · 𝑚) / 𝑑))↑2) = ((log‘𝑚)↑2))
3332oveq2d 6626 . . . . . . 7 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((μ‘𝑑) · ((log‘((𝑑 · 𝑚) / 𝑑))↑2)) = ((μ‘𝑑) · ((log‘𝑚)↑2)))
34332sumeq2dv 14377 . . . . . 6 (𝑥 ∈ ℝ+ → Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘((𝑑 · 𝑚) / 𝑑))↑2)) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)))
3522, 34eqtrd 2655 . . . . 5 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)))
3635oveq1d 6625 . . . 4 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) / 𝑥) = (Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)) / 𝑥))
3736oveq1d 6625 . . 3 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) / 𝑥) − (2 · (log‘𝑥))) = ((Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥))))
3837mpteq2ia 4705 . 2 (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) / 𝑥) − (2 · (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥))))
39 eqid 2621 . . 3 ((((log‘(𝑥 / 𝑑))↑2) + (2 − (2 · (log‘(𝑥 / 𝑑))))) / 𝑑) = ((((log‘(𝑥 / 𝑑))↑2) + (2 − (2 · (log‘(𝑥 / 𝑑))))) / 𝑑)
4039selberglem2 25152 . 2 (𝑥 ∈ ℝ+ ↦ ((Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
4138, 40eqeltri 2694 1 (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wa 384  w3a 1036   = wceq 1480  wcel 1987  {crab 2911   class class class wbr 4618  cmpt 4678  cfv 5852  (class class class)co 6610  cc 9886  1c1 9889   + caddc 9891   · cmul 9893  cmin 10218   / cdiv 10636  cn 10972  2c2 11022  cz 11329  +crp 11784  ...cfz 12276  cfl 12539  cexp 12808  𝑂(1)co1 14159  Σcsu 14358  cdvds 14918  logclog 24222  μcmu 24738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966  ax-addf 9967  ax-mulf 9968
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-disj 4589  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7861  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fsupp 8228  df-fi 8269  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-cda 8942  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-xnn0 11316  df-z 11330  df-dec 11446  df-uz 11640  df-q 11741  df-rp 11785  df-xneg 11898  df-xadd 11899  df-xmul 11900  df-ioo 12129  df-ioc 12130  df-ico 12131  df-icc 12132  df-fz 12277  df-fzo 12415  df-fl 12541  df-mod 12617  df-seq 12750  df-exp 12809  df-fac 13009  df-bc 13038  df-hash 13066  df-shft 13749  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-limsup 14144  df-clim 14161  df-rlim 14162  df-o1 14163  df-lo1 14164  df-sum 14359  df-ef 14734  df-e 14735  df-sin 14736  df-cos 14737  df-pi 14739  df-dvds 14919  df-gcd 15152  df-prm 15321  df-pc 15477  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-starv 15888  df-sca 15889  df-vsca 15890  df-ip 15891  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-hom 15898  df-cco 15899  df-rest 16015  df-topn 16016  df-0g 16034  df-gsum 16035  df-topgen 16036  df-pt 16037  df-prds 16040  df-xrs 16094  df-qtop 16099  df-imas 16100  df-xps 16102  df-mre 16178  df-mrc 16179  df-acs 16181  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-submnd 17268  df-mulg 17473  df-cntz 17682  df-cmn 18127  df-psmet 19670  df-xmet 19671  df-met 19672  df-bl 19673  df-mopn 19674  df-fbas 19675  df-fg 19676  df-cnfld 19679  df-top 20631  df-topon 20648  df-topsp 20661  df-bases 20674  df-cld 20746  df-ntr 20747  df-cls 20748  df-nei 20825  df-lp 20863  df-perf 20864  df-cn 20954  df-cnp 20955  df-haus 21042  df-cmp 21113  df-tx 21288  df-hmeo 21481  df-fil 21573  df-fm 21665  df-flim 21666  df-flf 21667  df-xms 22048  df-ms 22049  df-tms 22050  df-cncf 22604  df-limc 23553  df-dv 23554  df-log 24224  df-cxp 24225  df-em 24636  df-mu 24744
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator