MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqcaopr Structured version   Visualization version   GIF version

Theorem seqcaopr 13410
Description: The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 30-May-2014.)
Hypotheses
Ref Expression
seqcaopr.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqcaopr.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
seqcaopr.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
seqcaopr.4 (𝜑𝑁 ∈ (ℤ𝑀))
seqcaopr.5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ 𝑆)
seqcaopr.6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ 𝑆)
seqcaopr.7 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
Assertion
Ref Expression
seqcaopr (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq𝑀( + , 𝐺)‘𝑁)))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝐻   𝑥,𝑘,𝑦,𝑧,𝜑   𝑘,𝑀   + ,𝑘,𝑥,𝑦,𝑧   𝑆,𝑘,𝑥,𝑦,𝑧   𝑘,𝑁
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧)   𝐺(𝑥,𝑦,𝑧)   𝐻(𝑥,𝑦,𝑧)   𝑀(𝑥,𝑦,𝑧)   𝑁(𝑥,𝑦,𝑧)

Proof of Theorem seqcaopr
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqcaopr.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
21caovclg 7342 . 2 ((𝜑 ∧ (𝑎𝑆𝑏𝑆)) → (𝑎 + 𝑏) ∈ 𝑆)
3 simpl 485 . . . . . . 7 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → 𝜑)
4 simprrl 779 . . . . . . 7 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → 𝑐𝑆)
5 simprlr 778 . . . . . . 7 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → 𝑏𝑆)
6 seqcaopr.2 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
76caovcomg 7345 . . . . . . 7 ((𝜑 ∧ (𝑐𝑆𝑏𝑆)) → (𝑐 + 𝑏) = (𝑏 + 𝑐))
83, 4, 5, 7syl12anc 834 . . . . . 6 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → (𝑐 + 𝑏) = (𝑏 + 𝑐))
98oveq1d 7173 . . . . 5 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → ((𝑐 + 𝑏) + 𝑑) = ((𝑏 + 𝑐) + 𝑑))
10 simprrr 780 . . . . . 6 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → 𝑑𝑆)
11 seqcaopr.3 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
1211caovassg 7348 . . . . . 6 ((𝜑 ∧ (𝑐𝑆𝑏𝑆𝑑𝑆)) → ((𝑐 + 𝑏) + 𝑑) = (𝑐 + (𝑏 + 𝑑)))
133, 4, 5, 10, 12syl13anc 1368 . . . . 5 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → ((𝑐 + 𝑏) + 𝑑) = (𝑐 + (𝑏 + 𝑑)))
1411caovassg 7348 . . . . . 6 ((𝜑 ∧ (𝑏𝑆𝑐𝑆𝑑𝑆)) → ((𝑏 + 𝑐) + 𝑑) = (𝑏 + (𝑐 + 𝑑)))
153, 5, 4, 10, 14syl13anc 1368 . . . . 5 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → ((𝑏 + 𝑐) + 𝑑) = (𝑏 + (𝑐 + 𝑑)))
169, 13, 153eqtr3d 2866 . . . 4 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → (𝑐 + (𝑏 + 𝑑)) = (𝑏 + (𝑐 + 𝑑)))
1716oveq2d 7174 . . 3 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → (𝑎 + (𝑐 + (𝑏 + 𝑑))) = (𝑎 + (𝑏 + (𝑐 + 𝑑))))
18 simprll 777 . . . 4 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → 𝑎𝑆)
191caovclg 7342 . . . . 5 ((𝜑 ∧ (𝑏𝑆𝑑𝑆)) → (𝑏 + 𝑑) ∈ 𝑆)
203, 5, 10, 19syl12anc 834 . . . 4 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → (𝑏 + 𝑑) ∈ 𝑆)
2111caovassg 7348 . . . 4 ((𝜑 ∧ (𝑎𝑆𝑐𝑆 ∧ (𝑏 + 𝑑) ∈ 𝑆)) → ((𝑎 + 𝑐) + (𝑏 + 𝑑)) = (𝑎 + (𝑐 + (𝑏 + 𝑑))))
223, 18, 4, 20, 21syl13anc 1368 . . 3 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → ((𝑎 + 𝑐) + (𝑏 + 𝑑)) = (𝑎 + (𝑐 + (𝑏 + 𝑑))))
231caovclg 7342 . . . . 5 ((𝜑 ∧ (𝑐𝑆𝑑𝑆)) → (𝑐 + 𝑑) ∈ 𝑆)
2423adantrl 714 . . . 4 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → (𝑐 + 𝑑) ∈ 𝑆)
2511caovassg 7348 . . . 4 ((𝜑 ∧ (𝑎𝑆𝑏𝑆 ∧ (𝑐 + 𝑑) ∈ 𝑆)) → ((𝑎 + 𝑏) + (𝑐 + 𝑑)) = (𝑎 + (𝑏 + (𝑐 + 𝑑))))
263, 18, 5, 24, 25syl13anc 1368 . . 3 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → ((𝑎 + 𝑏) + (𝑐 + 𝑑)) = (𝑎 + (𝑏 + (𝑐 + 𝑑))))
2717, 22, 263eqtr4d 2868 . 2 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → ((𝑎 + 𝑐) + (𝑏 + 𝑑)) = ((𝑎 + 𝑏) + (𝑐 + 𝑑)))
28 seqcaopr.4 . 2 (𝜑𝑁 ∈ (ℤ𝑀))
29 seqcaopr.5 . 2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ 𝑆)
30 seqcaopr.6 . 2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ 𝑆)
31 seqcaopr.7 . 2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
322, 2, 27, 28, 29, 30, 31seqcaopr2 13409 1 (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq𝑀( + , 𝐺)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  cfv 6357  (class class class)co 7158  cuz 12246  ...cfz 12895  seqcseq 13372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373
This theorem is referenced by:  seradd  13415  prodfmul  15248  mulgnn0di  18948
  Copyright terms: Public domain W3C validator