MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqcl2 Structured version   Visualization version   GIF version

Theorem seqcl2 12759
Description: Closure properties of the recursive sequence builder. (Contributed by Mario Carneiro, 2-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqcl2.1 (𝜑 → (𝐹𝑀) ∈ 𝐶)
seqcl2.2 ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥 + 𝑦) ∈ 𝐶)
seqcl2.3 (𝜑𝑁 ∈ (ℤ𝑀))
seqcl2.4 ((𝜑𝑥 ∈ ((𝑀 + 1)...𝑁)) → (𝐹𝑥) ∈ 𝐷)
Assertion
Ref Expression
seqcl2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝐶)
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁   𝑥, + ,𝑦   𝜑,𝑥,𝑦
Allowed substitution hint:   𝑁(𝑦)

Proof of Theorem seqcl2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 seqcl2.3 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 12291 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 17 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 eleq1 2686 . . . . . 6 (𝑥 = 𝑀 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑀 ∈ (𝑀...𝑁)))
5 fveq2 6148 . . . . . . 7 (𝑥 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑀))
65eleq1d 2683 . . . . . 6 (𝑥 = 𝑀 → ((seq𝑀( + , 𝐹)‘𝑥) ∈ 𝐶 ↔ (seq𝑀( + , 𝐹)‘𝑀) ∈ 𝐶))
74, 6imbi12d 334 . . . . 5 (𝑥 = 𝑀 → ((𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) ∈ 𝐶) ↔ (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑀) ∈ 𝐶)))
87imbi2d 330 . . . 4 (𝑥 = 𝑀 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) ∈ 𝐶)) ↔ (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑀) ∈ 𝐶))))
9 eleq1 2686 . . . . . 6 (𝑥 = 𝑛 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑛 ∈ (𝑀...𝑁)))
10 fveq2 6148 . . . . . . 7 (𝑥 = 𝑛 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑛))
1110eleq1d 2683 . . . . . 6 (𝑥 = 𝑛 → ((seq𝑀( + , 𝐹)‘𝑥) ∈ 𝐶 ↔ (seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶))
129, 11imbi12d 334 . . . . 5 (𝑥 = 𝑛 → ((𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) ∈ 𝐶) ↔ (𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶)))
1312imbi2d 330 . . . 4 (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) ∈ 𝐶)) ↔ (𝜑 → (𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶))))
14 eleq1 2686 . . . . . 6 (𝑥 = (𝑛 + 1) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑛 + 1) ∈ (𝑀...𝑁)))
15 fveq2 6148 . . . . . . 7 (𝑥 = (𝑛 + 1) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘(𝑛 + 1)))
1615eleq1d 2683 . . . . . 6 (𝑥 = (𝑛 + 1) → ((seq𝑀( + , 𝐹)‘𝑥) ∈ 𝐶 ↔ (seq𝑀( + , 𝐹)‘(𝑛 + 1)) ∈ 𝐶))
1714, 16imbi12d 334 . . . . 5 (𝑥 = (𝑛 + 1) → ((𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) ∈ 𝐶) ↔ ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) ∈ 𝐶)))
1817imbi2d 330 . . . 4 (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) ∈ 𝐶)) ↔ (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) ∈ 𝐶))))
19 eleq1 2686 . . . . . 6 (𝑥 = 𝑁 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (𝑀...𝑁)))
20 fveq2 6148 . . . . . . 7 (𝑥 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑁))
2120eleq1d 2683 . . . . . 6 (𝑥 = 𝑁 → ((seq𝑀( + , 𝐹)‘𝑥) ∈ 𝐶 ↔ (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝐶))
2219, 21imbi12d 334 . . . . 5 (𝑥 = 𝑁 → ((𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) ∈ 𝐶) ↔ (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝐶)))
2322imbi2d 330 . . . 4 (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) ∈ 𝐶)) ↔ (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝐶))))
24 seqcl2.1 . . . . . 6 (𝜑 → (𝐹𝑀) ∈ 𝐶)
25 seq1 12754 . . . . . . 7 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
2625eleq1d 2683 . . . . . 6 (𝑀 ∈ ℤ → ((seq𝑀( + , 𝐹)‘𝑀) ∈ 𝐶 ↔ (𝐹𝑀) ∈ 𝐶))
2724, 26syl5ibr 236 . . . . 5 (𝑀 ∈ ℤ → (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) ∈ 𝐶))
2827a1dd 50 . . . 4 (𝑀 ∈ ℤ → (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑀) ∈ 𝐶)))
29 peano2fzr 12296 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ (𝑀...𝑁))
3029adantl 482 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (𝑀...𝑁))
3130expr 642 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑛 ∈ (𝑀...𝑁)))
3231imim1d 82 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶)))
33 eluzp1p1 11657 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑀) → (𝑛 + 1) ∈ (ℤ‘(𝑀 + 1)))
3433ad2antrl 763 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑛 + 1) ∈ (ℤ‘(𝑀 + 1)))
35 elfzuz3 12281 . . . . . . . . . . . . . 14 ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ‘(𝑛 + 1)))
3635ad2antll 764 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑁 ∈ (ℤ‘(𝑛 + 1)))
37 elfzuzb 12278 . . . . . . . . . . . . 13 ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) ↔ ((𝑛 + 1) ∈ (ℤ‘(𝑀 + 1)) ∧ 𝑁 ∈ (ℤ‘(𝑛 + 1))))
3834, 36, 37sylanbrc 697 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))
39 seqcl2.4 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝑀 + 1)...𝑁)) → (𝐹𝑥) ∈ 𝐷)
4039ralrimiva 2960 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑥) ∈ 𝐷)
4140adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ∀𝑥 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑥) ∈ 𝐷)
42 fveq2 6148 . . . . . . . . . . . . . 14 (𝑥 = (𝑛 + 1) → (𝐹𝑥) = (𝐹‘(𝑛 + 1)))
4342eleq1d 2683 . . . . . . . . . . . . 13 (𝑥 = (𝑛 + 1) → ((𝐹𝑥) ∈ 𝐷 ↔ (𝐹‘(𝑛 + 1)) ∈ 𝐷))
4443rspcv 3291 . . . . . . . . . . . 12 ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (∀𝑥 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑥) ∈ 𝐷 → (𝐹‘(𝑛 + 1)) ∈ 𝐷))
4538, 41, 44sylc 65 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹‘(𝑛 + 1)) ∈ 𝐷)
46 seqcl2.2 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥 + 𝑦) ∈ 𝐶)
4746caovclg 6779 . . . . . . . . . . . . 13 ((𝜑 ∧ ((seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝐷)) → ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) ∈ 𝐶)
4847ex 450 . . . . . . . . . . . 12 (𝜑 → (((seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝐷) → ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) ∈ 𝐶))
4948adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (((seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝐷) → ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) ∈ 𝐶))
5045, 49mpan2d 709 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶 → ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) ∈ 𝐶))
51 seqp1 12756 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
5251ad2antrl 763 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
5352eleq1d 2683 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((seq𝑀( + , 𝐹)‘(𝑛 + 1)) ∈ 𝐶 ↔ ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) ∈ 𝐶))
5450, 53sylibrd 249 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶 → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) ∈ 𝐶))
5554expr 642 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → ((seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶 → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) ∈ 𝐶)))
5655a2d 29 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → (((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) ∈ 𝐶)))
5732, 56syld 47 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) ∈ 𝐶)))
5857expcom 451 . . . . 5 (𝑛 ∈ (ℤ𝑀) → (𝜑 → ((𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) ∈ 𝐶))))
5958a2d 29 . . . 4 (𝑛 ∈ (ℤ𝑀) → ((𝜑 → (𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶)) → (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) ∈ 𝐶))))
608, 13, 18, 23, 28, 59uzind4 11690 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝐶)))
611, 60mpcom 38 . 2 (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝐶))
623, 61mpd 15 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wral 2907  cfv 5847  (class class class)co 6604  1c1 9881   + caddc 9883  cz 11321  cuz 11631  ...cfz 12268  seqcseq 12741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-seq 12742
This theorem is referenced by:  seqf2  12760  seqcl  12761  seqz  12789
  Copyright terms: Public domain W3C validator