MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqeq123d Structured version   Visualization version   GIF version

Theorem seqeq123d 12750
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
Hypotheses
Ref Expression
seqeq123d.1 (𝜑𝑀 = 𝑁)
seqeq123d.2 (𝜑+ = 𝑄)
seqeq123d.3 (𝜑𝐹 = 𝐺)
Assertion
Ref Expression
seqeq123d (𝜑 → seq𝑀( + , 𝐹) = seq𝑁(𝑄, 𝐺))

Proof of Theorem seqeq123d
StepHypRef Expression
1 seqeq123d.1 . . 3 (𝜑𝑀 = 𝑁)
21seqeq1d 12747 . 2 (𝜑 → seq𝑀( + , 𝐹) = seq𝑁( + , 𝐹))
3 seqeq123d.2 . . 3 (𝜑+ = 𝑄)
43seqeq2d 12748 . 2 (𝜑 → seq𝑁( + , 𝐹) = seq𝑁(𝑄, 𝐹))
5 seqeq123d.3 . . 3 (𝜑𝐹 = 𝐺)
65seqeq3d 12749 . 2 (𝜑 → seq𝑁(𝑄, 𝐹) = seq𝑁(𝑄, 𝐺))
72, 4, 63eqtrd 2659 1 (𝜑 → seq𝑀( + , 𝐹) = seq𝑁(𝑄, 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  seqcseq 12741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-xp 5080  df-cnv 5082  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-iota 5810  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-seq 12742
This theorem is referenced by:  relexpsucnnr  13699  sseqval  30228  bj-finsumval0  32777
  Copyright terms: Public domain W3C validator