MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqfveq2 Structured version   Visualization version   GIF version

Theorem seqfveq2 12763
Description: Equality of sequences. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqfveq2.1 (𝜑𝐾 ∈ (ℤ𝑀))
seqfveq2.2 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺𝐾))
seqfveq2.3 (𝜑𝑁 ∈ (ℤ𝐾))
seqfveq2.4 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
seqfveq2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝐾   𝑘,𝑁   𝜑,𝑘
Allowed substitution hints:   + (𝑘)   𝑀(𝑘)

Proof of Theorem seqfveq2
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqfveq2.3 . . 3 (𝜑𝑁 ∈ (ℤ𝐾))
2 eluzfz2 12291 . . 3 (𝑁 ∈ (ℤ𝐾) → 𝑁 ∈ (𝐾...𝑁))
31, 2syl 17 . 2 (𝜑𝑁 ∈ (𝐾...𝑁))
4 eleq1 2686 . . . . . 6 (𝑥 = 𝐾 → (𝑥 ∈ (𝐾...𝑁) ↔ 𝐾 ∈ (𝐾...𝑁)))
5 fveq2 6148 . . . . . . 7 (𝑥 = 𝐾 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝐾))
6 fveq2 6148 . . . . . . 7 (𝑥 = 𝐾 → (seq𝐾( + , 𝐺)‘𝑥) = (seq𝐾( + , 𝐺)‘𝐾))
75, 6eqeq12d 2636 . . . . . 6 (𝑥 = 𝐾 → ((seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥) ↔ (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾)))
84, 7imbi12d 334 . . . . 5 (𝑥 = 𝐾 → ((𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥)) ↔ (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾))))
98imbi2d 330 . . . 4 (𝑥 = 𝐾 → ((𝜑 → (𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥))) ↔ (𝜑 → (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾)))))
10 eleq1 2686 . . . . . 6 (𝑥 = 𝑛 → (𝑥 ∈ (𝐾...𝑁) ↔ 𝑛 ∈ (𝐾...𝑁)))
11 fveq2 6148 . . . . . . 7 (𝑥 = 𝑛 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑛))
12 fveq2 6148 . . . . . . 7 (𝑥 = 𝑛 → (seq𝐾( + , 𝐺)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑛))
1311, 12eqeq12d 2636 . . . . . 6 (𝑥 = 𝑛 → ((seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥) ↔ (seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛)))
1410, 13imbi12d 334 . . . . 5 (𝑥 = 𝑛 → ((𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥)) ↔ (𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛))))
1514imbi2d 330 . . . 4 (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥))) ↔ (𝜑 → (𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛)))))
16 eleq1 2686 . . . . . 6 (𝑥 = (𝑛 + 1) → (𝑥 ∈ (𝐾...𝑁) ↔ (𝑛 + 1) ∈ (𝐾...𝑁)))
17 fveq2 6148 . . . . . . 7 (𝑥 = (𝑛 + 1) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘(𝑛 + 1)))
18 fveq2 6148 . . . . . . 7 (𝑥 = (𝑛 + 1) → (seq𝐾( + , 𝐺)‘𝑥) = (seq𝐾( + , 𝐺)‘(𝑛 + 1)))
1917, 18eqeq12d 2636 . . . . . 6 (𝑥 = (𝑛 + 1) → ((seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥) ↔ (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq𝐾( + , 𝐺)‘(𝑛 + 1))))
2016, 19imbi12d 334 . . . . 5 (𝑥 = (𝑛 + 1) → ((𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥)) ↔ ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq𝐾( + , 𝐺)‘(𝑛 + 1)))))
2120imbi2d 330 . . . 4 (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥))) ↔ (𝜑 → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq𝐾( + , 𝐺)‘(𝑛 + 1))))))
22 eleq1 2686 . . . . . 6 (𝑥 = 𝑁 → (𝑥 ∈ (𝐾...𝑁) ↔ 𝑁 ∈ (𝐾...𝑁)))
23 fveq2 6148 . . . . . . 7 (𝑥 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑁))
24 fveq2 6148 . . . . . . 7 (𝑥 = 𝑁 → (seq𝐾( + , 𝐺)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑁))
2523, 24eqeq12d 2636 . . . . . 6 (𝑥 = 𝑁 → ((seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥) ↔ (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁)))
2622, 25imbi12d 334 . . . . 5 (𝑥 = 𝑁 → ((𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥)) ↔ (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁))))
2726imbi2d 330 . . . 4 (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁)))))
28 seqfveq2.2 . . . . . . 7 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺𝐾))
29 seqfveq2.1 . . . . . . . . 9 (𝜑𝐾 ∈ (ℤ𝑀))
30 eluzelz 11641 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
3129, 30syl 17 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
32 seq1 12754 . . . . . . . 8 (𝐾 ∈ ℤ → (seq𝐾( + , 𝐺)‘𝐾) = (𝐺𝐾))
3331, 32syl 17 . . . . . . 7 (𝜑 → (seq𝐾( + , 𝐺)‘𝐾) = (𝐺𝐾))
3428, 33eqtr4d 2658 . . . . . 6 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾))
3534a1d 25 . . . . 5 (𝜑 → (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾)))
3635a1i 11 . . . 4 (𝐾 ∈ ℤ → (𝜑 → (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾))))
37 peano2fzr 12296 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁)) → 𝑛 ∈ (𝐾...𝑁))
3837adantl 482 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → 𝑛 ∈ (𝐾...𝑁))
3938expr 642 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝐾)) → ((𝑛 + 1) ∈ (𝐾...𝑁) → 𝑛 ∈ (𝐾...𝑁)))
4039imim1d 82 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝐾)) → ((𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛)) → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛))))
41 oveq1 6611 . . . . . . . . . 10 ((seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛) → ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) = ((seq𝐾( + , 𝐺)‘𝑛) + (𝐹‘(𝑛 + 1))))
42 simpl 473 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁)) → 𝑛 ∈ (ℤ𝐾))
43 uztrn 11648 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑀)) → 𝑛 ∈ (ℤ𝑀))
4442, 29, 43syl2anr 495 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → 𝑛 ∈ (ℤ𝑀))
45 seqp1 12756 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
4644, 45syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
47 seqp1 12756 . . . . . . . . . . . . 13 (𝑛 ∈ (ℤ𝐾) → (seq𝐾( + , 𝐺)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))
4847ad2antrl 763 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (seq𝐾( + , 𝐺)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))
49 eluzp1p1 11657 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ𝐾) → (𝑛 + 1) ∈ (ℤ‘(𝐾 + 1)))
5049ad2antrl 763 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (𝑛 + 1) ∈ (ℤ‘(𝐾 + 1)))
51 elfzuz3 12281 . . . . . . . . . . . . . . . 16 ((𝑛 + 1) ∈ (𝐾...𝑁) → 𝑁 ∈ (ℤ‘(𝑛 + 1)))
5251ad2antll 764 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → 𝑁 ∈ (ℤ‘(𝑛 + 1)))
53 elfzuzb 12278 . . . . . . . . . . . . . . 15 ((𝑛 + 1) ∈ ((𝐾 + 1)...𝑁) ↔ ((𝑛 + 1) ∈ (ℤ‘(𝐾 + 1)) ∧ 𝑁 ∈ (ℤ‘(𝑛 + 1))))
5450, 52, 53sylanbrc 697 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (𝑛 + 1) ∈ ((𝐾 + 1)...𝑁))
55 seqfveq2.4 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐹𝑘) = (𝐺𝑘))
5655ralrimiva 2960 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝐹𝑘) = (𝐺𝑘))
5756adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → ∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝐹𝑘) = (𝐺𝑘))
58 fveq2 6148 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
59 fveq2 6148 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑛 + 1) → (𝐺𝑘) = (𝐺‘(𝑛 + 1)))
6058, 59eqeq12d 2636 . . . . . . . . . . . . . . 15 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) = (𝐺𝑘) ↔ (𝐹‘(𝑛 + 1)) = (𝐺‘(𝑛 + 1))))
6160rspcv 3291 . . . . . . . . . . . . . 14 ((𝑛 + 1) ∈ ((𝐾 + 1)...𝑁) → (∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝐹𝑘) = (𝐺𝑘) → (𝐹‘(𝑛 + 1)) = (𝐺‘(𝑛 + 1))))
6254, 57, 61sylc 65 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (𝐹‘(𝑛 + 1)) = (𝐺‘(𝑛 + 1)))
6362oveq2d 6620 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → ((seq𝐾( + , 𝐺)‘𝑛) + (𝐹‘(𝑛 + 1))) = ((seq𝐾( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))
6448, 63eqtr4d 2658 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (seq𝐾( + , 𝐺)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐺)‘𝑛) + (𝐹‘(𝑛 + 1))))
6546, 64eqeq12d 2636 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → ((seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq𝐾( + , 𝐺)‘(𝑛 + 1)) ↔ ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) = ((seq𝐾( + , 𝐺)‘𝑛) + (𝐹‘(𝑛 + 1)))))
6641, 65syl5ibr 236 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → ((seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq𝐾( + , 𝐺)‘(𝑛 + 1))))
6766expr 642 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝐾)) → ((𝑛 + 1) ∈ (𝐾...𝑁) → ((seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq𝐾( + , 𝐺)‘(𝑛 + 1)))))
6867a2d 29 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝐾)) → (((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛)) → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq𝐾( + , 𝐺)‘(𝑛 + 1)))))
6940, 68syld 47 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝐾)) → ((𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛)) → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq𝐾( + , 𝐺)‘(𝑛 + 1)))))
7069expcom 451 . . . . 5 (𝑛 ∈ (ℤ𝐾) → (𝜑 → ((𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛)) → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq𝐾( + , 𝐺)‘(𝑛 + 1))))))
7170a2d 29 . . . 4 (𝑛 ∈ (ℤ𝐾) → ((𝜑 → (𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛))) → (𝜑 → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq𝐾( + , 𝐺)‘(𝑛 + 1))))))
729, 15, 21, 27, 36, 71uzind4 11690 . . 3 (𝑁 ∈ (ℤ𝐾) → (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁))))
731, 72mpcom 38 . 2 (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁)))
743, 73mpd 15 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wral 2907  cfv 5847  (class class class)co 6604  1c1 9881   + caddc 9883  cz 11321  cuz 11631  ...cfz 12268  seqcseq 12741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-seq 12742
This theorem is referenced by:  seqfeq2  12764  seqfveq  12765  seqz  12789
  Copyright terms: Public domain W3C validator