MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqid3 Structured version   Visualization version   GIF version

Theorem seqid3 12785
Description: A sequence that consists entirely of zeroes (or whatever the identity 𝑍 is for operation +) sums to zero. (Contributed by Mario Carneiro, 15-Dec-2014.)
Hypotheses
Ref Expression
seqid3.1 (𝜑 → (𝑍 + 𝑍) = 𝑍)
seqid3.2 (𝜑𝑁 ∈ (ℤ𝑀))
seqid3.3 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) = 𝑍)
Assertion
Ref Expression
seqid3 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍)
Distinct variable groups:   𝑥, +   𝑥,𝐹   𝑥,𝑀   𝜑,𝑥   𝑥,𝑍   𝑥,𝑁

Proof of Theorem seqid3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 seqid3.2 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 seqid3.3 . . . 4 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) = 𝑍)
3 fvex 6158 . . . . 5 (𝐹𝑥) ∈ V
43elsn 4163 . . . 4 ((𝐹𝑥) ∈ {𝑍} ↔ (𝐹𝑥) = 𝑍)
52, 4sylibr 224 . . 3 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ {𝑍})
6 seqid3.1 . . . . . 6 (𝜑 → (𝑍 + 𝑍) = 𝑍)
7 ovex 6632 . . . . . . 7 (𝑍 + 𝑍) ∈ V
87elsn 4163 . . . . . 6 ((𝑍 + 𝑍) ∈ {𝑍} ↔ (𝑍 + 𝑍) = 𝑍)
96, 8sylibr 224 . . . . 5 (𝜑 → (𝑍 + 𝑍) ∈ {𝑍})
10 elsni 4165 . . . . . . 7 (𝑥 ∈ {𝑍} → 𝑥 = 𝑍)
11 elsni 4165 . . . . . . 7 (𝑦 ∈ {𝑍} → 𝑦 = 𝑍)
1210, 11oveqan12d 6623 . . . . . 6 ((𝑥 ∈ {𝑍} ∧ 𝑦 ∈ {𝑍}) → (𝑥 + 𝑦) = (𝑍 + 𝑍))
1312eleq1d 2683 . . . . 5 ((𝑥 ∈ {𝑍} ∧ 𝑦 ∈ {𝑍}) → ((𝑥 + 𝑦) ∈ {𝑍} ↔ (𝑍 + 𝑍) ∈ {𝑍}))
149, 13syl5ibrcom 237 . . . 4 (𝜑 → ((𝑥 ∈ {𝑍} ∧ 𝑦 ∈ {𝑍}) → (𝑥 + 𝑦) ∈ {𝑍}))
1514imp 445 . . 3 ((𝜑 ∧ (𝑥 ∈ {𝑍} ∧ 𝑦 ∈ {𝑍})) → (𝑥 + 𝑦) ∈ {𝑍})
161, 5, 15seqcl 12761 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ {𝑍})
17 elsni 4165 . 2 ((seq𝑀( + , 𝐹)‘𝑁) ∈ {𝑍} → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍)
1816, 17syl 17 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  {csn 4148  cfv 5847  (class class class)co 6604  cuz 11631  ...cfz 12268  seqcseq 12741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-seq 12742
This theorem is referenced by:  seqid  12786  ser0  12793  prodf1  14548  gsumval2  17201  mulgnn0z  17488  gsumval3  18229  lgsval2lem  24932
  Copyright terms: Public domain W3C validator