MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqof Structured version   Visualization version   GIF version

Theorem seqof 13421
Description: Distribute function operation through a sequence. Note that 𝐺(𝑧) is an implicit function on 𝑧. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
seqof.1 (𝜑𝐴𝑉)
seqof.2 (𝜑𝑁 ∈ (ℤ𝑀))
seqof.3 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) = (𝑧𝐴 ↦ (𝐺𝑥)))
Assertion
Ref Expression
seqof (𝜑 → (seq𝑀( ∘f + , 𝐹)‘𝑁) = (𝑧𝐴 ↦ (seq𝑀( + , 𝐺)‘𝑁)))
Distinct variable groups:   𝑥,𝑧,𝐴   𝑥,𝐹,𝑧   𝑥,𝐺   𝑥,𝑀,𝑧   𝑥,𝑁,𝑧   𝑥, + ,𝑧   𝜑,𝑥,𝑧
Allowed substitution hints:   𝐺(𝑧)   𝑉(𝑥,𝑧)

Proof of Theorem seqof
Dummy variables 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqof.2 . . . . 5 (𝜑𝑁 ∈ (ℤ𝑀))
2 fvex 6677 . . . . . . . . 9 (𝐺𝑥) ∈ V
32rgenw 3150 . . . . . . . 8 𝑧𝐴 (𝐺𝑥) ∈ V
4 eqid 2821 . . . . . . . . 9 (𝑧𝐴 ↦ (𝐺𝑥)) = (𝑧𝐴 ↦ (𝐺𝑥))
54fnmpt 6482 . . . . . . . 8 (∀𝑧𝐴 (𝐺𝑥) ∈ V → (𝑧𝐴 ↦ (𝐺𝑥)) Fn 𝐴)
63, 5mp1i 13 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝑧𝐴 ↦ (𝐺𝑥)) Fn 𝐴)
7 seqof.3 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) = (𝑧𝐴 ↦ (𝐺𝑥)))
87fneq1d 6440 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀...𝑁)) → ((𝐹𝑥) Fn 𝐴 ↔ (𝑧𝐴 ↦ (𝐺𝑥)) Fn 𝐴))
96, 8mpbird 259 . . . . . 6 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) Fn 𝐴)
10 fvex 6677 . . . . . . 7 (𝐹𝑥) ∈ V
11 fneq1 6438 . . . . . . 7 (𝑧 = (𝐹𝑥) → (𝑧 Fn 𝐴 ↔ (𝐹𝑥) Fn 𝐴))
1210, 11elab 3666 . . . . . 6 ((𝐹𝑥) ∈ {𝑧𝑧 Fn 𝐴} ↔ (𝐹𝑥) Fn 𝐴)
139, 12sylibr 236 . . . . 5 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ {𝑧𝑧 Fn 𝐴})
14 simprl 769 . . . . . . . . 9 ((𝜑 ∧ (𝑥 Fn 𝐴𝑦 Fn 𝐴)) → 𝑥 Fn 𝐴)
15 simprr 771 . . . . . . . . 9 ((𝜑 ∧ (𝑥 Fn 𝐴𝑦 Fn 𝐴)) → 𝑦 Fn 𝐴)
16 seqof.1 . . . . . . . . . 10 (𝜑𝐴𝑉)
1716adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑥 Fn 𝐴𝑦 Fn 𝐴)) → 𝐴𝑉)
18 inidm 4194 . . . . . . . . 9 (𝐴𝐴) = 𝐴
1914, 15, 17, 17, 18offn 7414 . . . . . . . 8 ((𝜑 ∧ (𝑥 Fn 𝐴𝑦 Fn 𝐴)) → (𝑥f + 𝑦) Fn 𝐴)
2019ex 415 . . . . . . 7 (𝜑 → ((𝑥 Fn 𝐴𝑦 Fn 𝐴) → (𝑥f + 𝑦) Fn 𝐴))
21 vex 3497 . . . . . . . . 9 𝑥 ∈ V
22 fneq1 6438 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑧 Fn 𝐴𝑥 Fn 𝐴))
2321, 22elab 3666 . . . . . . . 8 (𝑥 ∈ {𝑧𝑧 Fn 𝐴} ↔ 𝑥 Fn 𝐴)
24 vex 3497 . . . . . . . . 9 𝑦 ∈ V
25 fneq1 6438 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑧 Fn 𝐴𝑦 Fn 𝐴))
2624, 25elab 3666 . . . . . . . 8 (𝑦 ∈ {𝑧𝑧 Fn 𝐴} ↔ 𝑦 Fn 𝐴)
2723, 26anbi12i 628 . . . . . . 7 ((𝑥 ∈ {𝑧𝑧 Fn 𝐴} ∧ 𝑦 ∈ {𝑧𝑧 Fn 𝐴}) ↔ (𝑥 Fn 𝐴𝑦 Fn 𝐴))
28 ovex 7183 . . . . . . . 8 (𝑥f + 𝑦) ∈ V
29 fneq1 6438 . . . . . . . 8 (𝑧 = (𝑥f + 𝑦) → (𝑧 Fn 𝐴 ↔ (𝑥f + 𝑦) Fn 𝐴))
3028, 29elab 3666 . . . . . . 7 ((𝑥f + 𝑦) ∈ {𝑧𝑧 Fn 𝐴} ↔ (𝑥f + 𝑦) Fn 𝐴)
3120, 27, 303imtr4g 298 . . . . . 6 (𝜑 → ((𝑥 ∈ {𝑧𝑧 Fn 𝐴} ∧ 𝑦 ∈ {𝑧𝑧 Fn 𝐴}) → (𝑥f + 𝑦) ∈ {𝑧𝑧 Fn 𝐴}))
3231imp 409 . . . . 5 ((𝜑 ∧ (𝑥 ∈ {𝑧𝑧 Fn 𝐴} ∧ 𝑦 ∈ {𝑧𝑧 Fn 𝐴})) → (𝑥f + 𝑦) ∈ {𝑧𝑧 Fn 𝐴})
331, 13, 32seqcl 13384 . . . 4 (𝜑 → (seq𝑀( ∘f + , 𝐹)‘𝑁) ∈ {𝑧𝑧 Fn 𝐴})
34 fvex 6677 . . . . 5 (seq𝑀( ∘f + , 𝐹)‘𝑁) ∈ V
35 fneq1 6438 . . . . 5 (𝑧 = (seq𝑀( ∘f + , 𝐹)‘𝑁) → (𝑧 Fn 𝐴 ↔ (seq𝑀( ∘f + , 𝐹)‘𝑁) Fn 𝐴))
3634, 35elab 3666 . . . 4 ((seq𝑀( ∘f + , 𝐹)‘𝑁) ∈ {𝑧𝑧 Fn 𝐴} ↔ (seq𝑀( ∘f + , 𝐹)‘𝑁) Fn 𝐴)
3733, 36sylib 220 . . 3 (𝜑 → (seq𝑀( ∘f + , 𝐹)‘𝑁) Fn 𝐴)
38 dffn5 6718 . . 3 ((seq𝑀( ∘f + , 𝐹)‘𝑁) Fn 𝐴 ↔ (seq𝑀( ∘f + , 𝐹)‘𝑁) = (𝑧𝐴 ↦ ((seq𝑀( ∘f + , 𝐹)‘𝑁)‘𝑧)))
3937, 38sylib 220 . 2 (𝜑 → (seq𝑀( ∘f + , 𝐹)‘𝑁) = (𝑧𝐴 ↦ ((seq𝑀( ∘f + , 𝐹)‘𝑁)‘𝑧)))
40 fveq1 6663 . . . . . 6 (𝑤 = (seq𝑀( ∘f + , 𝐹)‘𝑁) → (𝑤𝑧) = ((seq𝑀( ∘f + , 𝐹)‘𝑁)‘𝑧))
41 eqid 2821 . . . . . 6 (𝑤 ∈ V ↦ (𝑤𝑧)) = (𝑤 ∈ V ↦ (𝑤𝑧))
42 fvex 6677 . . . . . 6 ((seq𝑀( ∘f + , 𝐹)‘𝑁)‘𝑧) ∈ V
4340, 41, 42fvmpt 6762 . . . . 5 ((seq𝑀( ∘f + , 𝐹)‘𝑁) ∈ V → ((𝑤 ∈ V ↦ (𝑤𝑧))‘(seq𝑀( ∘f + , 𝐹)‘𝑁)) = ((seq𝑀( ∘f + , 𝐹)‘𝑁)‘𝑧))
4434, 43mp1i 13 . . . 4 ((𝜑𝑧𝐴) → ((𝑤 ∈ V ↦ (𝑤𝑧))‘(seq𝑀( ∘f + , 𝐹)‘𝑁)) = ((seq𝑀( ∘f + , 𝐹)‘𝑁)‘𝑧))
4532adantlr 713 . . . . 5 (((𝜑𝑧𝐴) ∧ (𝑥 ∈ {𝑧𝑧 Fn 𝐴} ∧ 𝑦 ∈ {𝑧𝑧 Fn 𝐴})) → (𝑥f + 𝑦) ∈ {𝑧𝑧 Fn 𝐴})
4613adantlr 713 . . . . 5 (((𝜑𝑧𝐴) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ {𝑧𝑧 Fn 𝐴})
471adantr 483 . . . . 5 ((𝜑𝑧𝐴) → 𝑁 ∈ (ℤ𝑀))
48 eqidd 2822 . . . . . . . . 9 (((𝜑 ∧ (𝑥 Fn 𝐴𝑦 Fn 𝐴)) ∧ 𝑧𝐴) → (𝑥𝑧) = (𝑥𝑧))
49 eqidd 2822 . . . . . . . . 9 (((𝜑 ∧ (𝑥 Fn 𝐴𝑦 Fn 𝐴)) ∧ 𝑧𝐴) → (𝑦𝑧) = (𝑦𝑧))
5014, 15, 17, 17, 18, 48, 49ofval 7412 . . . . . . . 8 (((𝜑 ∧ (𝑥 Fn 𝐴𝑦 Fn 𝐴)) ∧ 𝑧𝐴) → ((𝑥f + 𝑦)‘𝑧) = ((𝑥𝑧) + (𝑦𝑧)))
5150an32s 650 . . . . . . 7 (((𝜑𝑧𝐴) ∧ (𝑥 Fn 𝐴𝑦 Fn 𝐴)) → ((𝑥f + 𝑦)‘𝑧) = ((𝑥𝑧) + (𝑦𝑧)))
52 fveq1 6663 . . . . . . . . 9 (𝑤 = (𝑥f + 𝑦) → (𝑤𝑧) = ((𝑥f + 𝑦)‘𝑧))
53 fvex 6677 . . . . . . . . 9 ((𝑥f + 𝑦)‘𝑧) ∈ V
5452, 41, 53fvmpt 6762 . . . . . . . 8 ((𝑥f + 𝑦) ∈ V → ((𝑤 ∈ V ↦ (𝑤𝑧))‘(𝑥f + 𝑦)) = ((𝑥f + 𝑦)‘𝑧))
5528, 54ax-mp 5 . . . . . . 7 ((𝑤 ∈ V ↦ (𝑤𝑧))‘(𝑥f + 𝑦)) = ((𝑥f + 𝑦)‘𝑧)
56 fveq1 6663 . . . . . . . . . 10 (𝑤 = 𝑥 → (𝑤𝑧) = (𝑥𝑧))
57 fvex 6677 . . . . . . . . . 10 (𝑥𝑧) ∈ V
5856, 41, 57fvmpt 6762 . . . . . . . . 9 (𝑥 ∈ V → ((𝑤 ∈ V ↦ (𝑤𝑧))‘𝑥) = (𝑥𝑧))
5958elv 3499 . . . . . . . 8 ((𝑤 ∈ V ↦ (𝑤𝑧))‘𝑥) = (𝑥𝑧)
60 fveq1 6663 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑤𝑧) = (𝑦𝑧))
61 fvex 6677 . . . . . . . . . 10 (𝑦𝑧) ∈ V
6260, 41, 61fvmpt 6762 . . . . . . . . 9 (𝑦 ∈ V → ((𝑤 ∈ V ↦ (𝑤𝑧))‘𝑦) = (𝑦𝑧))
6362elv 3499 . . . . . . . 8 ((𝑤 ∈ V ↦ (𝑤𝑧))‘𝑦) = (𝑦𝑧)
6459, 63oveq12i 7162 . . . . . . 7 (((𝑤 ∈ V ↦ (𝑤𝑧))‘𝑥) + ((𝑤 ∈ V ↦ (𝑤𝑧))‘𝑦)) = ((𝑥𝑧) + (𝑦𝑧))
6551, 55, 643eqtr4g 2881 . . . . . 6 (((𝜑𝑧𝐴) ∧ (𝑥 Fn 𝐴𝑦 Fn 𝐴)) → ((𝑤 ∈ V ↦ (𝑤𝑧))‘(𝑥f + 𝑦)) = (((𝑤 ∈ V ↦ (𝑤𝑧))‘𝑥) + ((𝑤 ∈ V ↦ (𝑤𝑧))‘𝑦)))
6627, 65sylan2b 595 . . . . 5 (((𝜑𝑧𝐴) ∧ (𝑥 ∈ {𝑧𝑧 Fn 𝐴} ∧ 𝑦 ∈ {𝑧𝑧 Fn 𝐴})) → ((𝑤 ∈ V ↦ (𝑤𝑧))‘(𝑥f + 𝑦)) = (((𝑤 ∈ V ↦ (𝑤𝑧))‘𝑥) + ((𝑤 ∈ V ↦ (𝑤𝑧))‘𝑦)))
67 fveq1 6663 . . . . . . . 8 (𝑤 = (𝐹𝑥) → (𝑤𝑧) = ((𝐹𝑥)‘𝑧))
68 fvex 6677 . . . . . . . 8 ((𝐹𝑥)‘𝑧) ∈ V
6967, 41, 68fvmpt 6762 . . . . . . 7 ((𝐹𝑥) ∈ V → ((𝑤 ∈ V ↦ (𝑤𝑧))‘(𝐹𝑥)) = ((𝐹𝑥)‘𝑧))
7010, 69ax-mp 5 . . . . . 6 ((𝑤 ∈ V ↦ (𝑤𝑧))‘(𝐹𝑥)) = ((𝐹𝑥)‘𝑧)
717adantlr 713 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) = (𝑧𝐴 ↦ (𝐺𝑥)))
7271fveq1d 6666 . . . . . . 7 (((𝜑𝑧𝐴) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐹𝑥)‘𝑧) = ((𝑧𝐴 ↦ (𝐺𝑥))‘𝑧))
73 simplr 767 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑧𝐴)
744fvmpt2 6773 . . . . . . . 8 ((𝑧𝐴 ∧ (𝐺𝑥) ∈ V) → ((𝑧𝐴 ↦ (𝐺𝑥))‘𝑧) = (𝐺𝑥))
7573, 2, 74sylancl 588 . . . . . . 7 (((𝜑𝑧𝐴) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝑧𝐴 ↦ (𝐺𝑥))‘𝑧) = (𝐺𝑥))
7672, 75eqtrd 2856 . . . . . 6 (((𝜑𝑧𝐴) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐹𝑥)‘𝑧) = (𝐺𝑥))
7770, 76syl5eq 2868 . . . . 5 (((𝜑𝑧𝐴) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝑤 ∈ V ↦ (𝑤𝑧))‘(𝐹𝑥)) = (𝐺𝑥))
7845, 46, 47, 66, 77seqhomo 13411 . . . 4 ((𝜑𝑧𝐴) → ((𝑤 ∈ V ↦ (𝑤𝑧))‘(seq𝑀( ∘f + , 𝐹)‘𝑁)) = (seq𝑀( + , 𝐺)‘𝑁))
7944, 78eqtr3d 2858 . . 3 ((𝜑𝑧𝐴) → ((seq𝑀( ∘f + , 𝐹)‘𝑁)‘𝑧) = (seq𝑀( + , 𝐺)‘𝑁))
8079mpteq2dva 5153 . 2 (𝜑 → (𝑧𝐴 ↦ ((seq𝑀( ∘f + , 𝐹)‘𝑁)‘𝑧)) = (𝑧𝐴 ↦ (seq𝑀( + , 𝐺)‘𝑁)))
8139, 80eqtrd 2856 1 (𝜑 → (seq𝑀( ∘f + , 𝐹)‘𝑁) = (𝑧𝐴 ↦ (seq𝑀( + , 𝐺)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  {cab 2799  wral 3138  Vcvv 3494  cmpt 5138   Fn wfn 6344  cfv 6349  (class class class)co 7150  f cof 7401  cuz 12237  ...cfz 12886  seqcseq 13363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-seq 13364
This theorem is referenced by:  seqof2  13422  mtest  24986  pserulm  25004  knoppcnlem7  33833
  Copyright terms: Public domain W3C validator