MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqomlem2 Structured version   Visualization version   GIF version

Theorem seqomlem2 8081
Description: Lemma for seqω. (Contributed by Stefan O'Rear, 1-Nov-2014.) (Revised by Mario Carneiro, 23-Jun-2015.)
Hypothesis
Ref Expression
seqomlem.a 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)
Assertion
Ref Expression
seqomlem2 (𝑄 “ ω) Fn ω
Distinct variable groups:   𝑄,𝑖,𝑣   𝑖,𝐹,𝑣
Allowed substitution hints:   𝐼(𝑣,𝑖)

Proof of Theorem seqomlem2
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frfnom 8064 . . . . . . 7 (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω) Fn ω
2 seqomlem.a . . . . . . . . 9 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)
32reseq1i 5843 . . . . . . . 8 (𝑄 ↾ ω) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)
43fneq1i 6444 . . . . . . 7 ((𝑄 ↾ ω) Fn ω ↔ (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω) Fn ω)
51, 4mpbir 233 . . . . . 6 (𝑄 ↾ ω) Fn ω
6 fvres 6683 . . . . . . . . 9 (𝑏 ∈ ω → ((𝑄 ↾ ω)‘𝑏) = (𝑄𝑏))
72seqomlem1 8080 . . . . . . . . 9 (𝑏 ∈ ω → (𝑄𝑏) = ⟨𝑏, (2nd ‘(𝑄𝑏))⟩)
86, 7eqtrd 2856 . . . . . . . 8 (𝑏 ∈ ω → ((𝑄 ↾ ω)‘𝑏) = ⟨𝑏, (2nd ‘(𝑄𝑏))⟩)
9 fvex 6677 . . . . . . . . 9 (2nd ‘(𝑄𝑏)) ∈ V
10 opelxpi 5586 . . . . . . . . 9 ((𝑏 ∈ ω ∧ (2nd ‘(𝑄𝑏)) ∈ V) → ⟨𝑏, (2nd ‘(𝑄𝑏))⟩ ∈ (ω × V))
119, 10mpan2 689 . . . . . . . 8 (𝑏 ∈ ω → ⟨𝑏, (2nd ‘(𝑄𝑏))⟩ ∈ (ω × V))
128, 11eqeltrd 2913 . . . . . . 7 (𝑏 ∈ ω → ((𝑄 ↾ ω)‘𝑏) ∈ (ω × V))
1312rgen 3148 . . . . . 6 𝑏 ∈ ω ((𝑄 ↾ ω)‘𝑏) ∈ (ω × V)
14 ffnfv 6876 . . . . . 6 ((𝑄 ↾ ω):ω⟶(ω × V) ↔ ((𝑄 ↾ ω) Fn ω ∧ ∀𝑏 ∈ ω ((𝑄 ↾ ω)‘𝑏) ∈ (ω × V)))
155, 13, 14mpbir2an 709 . . . . 5 (𝑄 ↾ ω):ω⟶(ω × V)
16 frn 6514 . . . . 5 ((𝑄 ↾ ω):ω⟶(ω × V) → ran (𝑄 ↾ ω) ⊆ (ω × V))
1715, 16ax-mp 5 . . . 4 ran (𝑄 ↾ ω) ⊆ (ω × V)
18 df-br 5059 . . . . . . . . . 10 (𝑎ran (𝑄 ↾ ω)𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ ran (𝑄 ↾ ω))
19 fvelrnb 6720 . . . . . . . . . . 11 ((𝑄 ↾ ω) Fn ω → (⟨𝑎, 𝑏⟩ ∈ ran (𝑄 ↾ ω) ↔ ∃𝑐 ∈ ω ((𝑄 ↾ ω)‘𝑐) = ⟨𝑎, 𝑏⟩))
205, 19ax-mp 5 . . . . . . . . . 10 (⟨𝑎, 𝑏⟩ ∈ ran (𝑄 ↾ ω) ↔ ∃𝑐 ∈ ω ((𝑄 ↾ ω)‘𝑐) = ⟨𝑎, 𝑏⟩)
21 fvres 6683 . . . . . . . . . . . 12 (𝑐 ∈ ω → ((𝑄 ↾ ω)‘𝑐) = (𝑄𝑐))
2221eqeq1d 2823 . . . . . . . . . . 11 (𝑐 ∈ ω → (((𝑄 ↾ ω)‘𝑐) = ⟨𝑎, 𝑏⟩ ↔ (𝑄𝑐) = ⟨𝑎, 𝑏⟩))
2322rexbiia 3246 . . . . . . . . . 10 (∃𝑐 ∈ ω ((𝑄 ↾ ω)‘𝑐) = ⟨𝑎, 𝑏⟩ ↔ ∃𝑐 ∈ ω (𝑄𝑐) = ⟨𝑎, 𝑏⟩)
2418, 20, 233bitri 299 . . . . . . . . 9 (𝑎ran (𝑄 ↾ ω)𝑏 ↔ ∃𝑐 ∈ ω (𝑄𝑐) = ⟨𝑎, 𝑏⟩)
252seqomlem1 8080 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ω → (𝑄𝑐) = ⟨𝑐, (2nd ‘(𝑄𝑐))⟩)
2625adantl 484 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ω ∧ 𝑐 ∈ ω) → (𝑄𝑐) = ⟨𝑐, (2nd ‘(𝑄𝑐))⟩)
2726eqeq1d 2823 . . . . . . . . . . . . . 14 ((𝑎 ∈ ω ∧ 𝑐 ∈ ω) → ((𝑄𝑐) = ⟨𝑎, 𝑏⟩ ↔ ⟨𝑐, (2nd ‘(𝑄𝑐))⟩ = ⟨𝑎, 𝑏⟩))
28 vex 3497 . . . . . . . . . . . . . . 15 𝑐 ∈ V
29 fvex 6677 . . . . . . . . . . . . . . 15 (2nd ‘(𝑄𝑐)) ∈ V
3028, 29opth1 5359 . . . . . . . . . . . . . 14 (⟨𝑐, (2nd ‘(𝑄𝑐))⟩ = ⟨𝑎, 𝑏⟩ → 𝑐 = 𝑎)
3127, 30syl6bi 255 . . . . . . . . . . . . 13 ((𝑎 ∈ ω ∧ 𝑐 ∈ ω) → ((𝑄𝑐) = ⟨𝑎, 𝑏⟩ → 𝑐 = 𝑎))
32 fveqeq2 6673 . . . . . . . . . . . . . 14 (𝑐 = 𝑎 → ((𝑄𝑐) = ⟨𝑎, 𝑏⟩ ↔ (𝑄𝑎) = ⟨𝑎, 𝑏⟩))
3332biimpd 231 . . . . . . . . . . . . 13 (𝑐 = 𝑎 → ((𝑄𝑐) = ⟨𝑎, 𝑏⟩ → (𝑄𝑎) = ⟨𝑎, 𝑏⟩))
3431, 33syli 39 . . . . . . . . . . . 12 ((𝑎 ∈ ω ∧ 𝑐 ∈ ω) → ((𝑄𝑐) = ⟨𝑎, 𝑏⟩ → (𝑄𝑎) = ⟨𝑎, 𝑏⟩))
35 fveq2 6664 . . . . . . . . . . . . 13 ((𝑄𝑎) = ⟨𝑎, 𝑏⟩ → (2nd ‘(𝑄𝑎)) = (2nd ‘⟨𝑎, 𝑏⟩))
36 vex 3497 . . . . . . . . . . . . . 14 𝑎 ∈ V
37 vex 3497 . . . . . . . . . . . . . 14 𝑏 ∈ V
3836, 37op2nd 7692 . . . . . . . . . . . . 13 (2nd ‘⟨𝑎, 𝑏⟩) = 𝑏
3935, 38syl6req 2873 . . . . . . . . . . . 12 ((𝑄𝑎) = ⟨𝑎, 𝑏⟩ → 𝑏 = (2nd ‘(𝑄𝑎)))
4034, 39syl6 35 . . . . . . . . . . 11 ((𝑎 ∈ ω ∧ 𝑐 ∈ ω) → ((𝑄𝑐) = ⟨𝑎, 𝑏⟩ → 𝑏 = (2nd ‘(𝑄𝑎))))
4140rexlimdva 3284 . . . . . . . . . 10 (𝑎 ∈ ω → (∃𝑐 ∈ ω (𝑄𝑐) = ⟨𝑎, 𝑏⟩ → 𝑏 = (2nd ‘(𝑄𝑎))))
422seqomlem1 8080 . . . . . . . . . . . 12 (𝑎 ∈ ω → (𝑄𝑎) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩)
43 fveqeq2 6673 . . . . . . . . . . . . 13 (𝑐 = 𝑎 → ((𝑄𝑐) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩ ↔ (𝑄𝑎) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩))
4443rspcev 3622 . . . . . . . . . . . 12 ((𝑎 ∈ ω ∧ (𝑄𝑎) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩) → ∃𝑐 ∈ ω (𝑄𝑐) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩)
4542, 44mpdan 685 . . . . . . . . . . 11 (𝑎 ∈ ω → ∃𝑐 ∈ ω (𝑄𝑐) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩)
46 opeq2 4797 . . . . . . . . . . . . 13 (𝑏 = (2nd ‘(𝑄𝑎)) → ⟨𝑎, 𝑏⟩ = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩)
4746eqeq2d 2832 . . . . . . . . . . . 12 (𝑏 = (2nd ‘(𝑄𝑎)) → ((𝑄𝑐) = ⟨𝑎, 𝑏⟩ ↔ (𝑄𝑐) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩))
4847rexbidv 3297 . . . . . . . . . . 11 (𝑏 = (2nd ‘(𝑄𝑎)) → (∃𝑐 ∈ ω (𝑄𝑐) = ⟨𝑎, 𝑏⟩ ↔ ∃𝑐 ∈ ω (𝑄𝑐) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩))
4945, 48syl5ibrcom 249 . . . . . . . . . 10 (𝑎 ∈ ω → (𝑏 = (2nd ‘(𝑄𝑎)) → ∃𝑐 ∈ ω (𝑄𝑐) = ⟨𝑎, 𝑏⟩))
5041, 49impbid 214 . . . . . . . . 9 (𝑎 ∈ ω → (∃𝑐 ∈ ω (𝑄𝑐) = ⟨𝑎, 𝑏⟩ ↔ 𝑏 = (2nd ‘(𝑄𝑎))))
5124, 50syl5bb 285 . . . . . . . 8 (𝑎 ∈ ω → (𝑎ran (𝑄 ↾ ω)𝑏𝑏 = (2nd ‘(𝑄𝑎))))
5251alrimiv 1924 . . . . . . 7 (𝑎 ∈ ω → ∀𝑏(𝑎ran (𝑄 ↾ ω)𝑏𝑏 = (2nd ‘(𝑄𝑎))))
53 fvex 6677 . . . . . . . 8 (2nd ‘(𝑄𝑎)) ∈ V
54 eqeq2 2833 . . . . . . . . . 10 (𝑐 = (2nd ‘(𝑄𝑎)) → (𝑏 = 𝑐𝑏 = (2nd ‘(𝑄𝑎))))
5554bibi2d 345 . . . . . . . . 9 (𝑐 = (2nd ‘(𝑄𝑎)) → ((𝑎ran (𝑄 ↾ ω)𝑏𝑏 = 𝑐) ↔ (𝑎ran (𝑄 ↾ ω)𝑏𝑏 = (2nd ‘(𝑄𝑎)))))
5655albidv 1917 . . . . . . . 8 (𝑐 = (2nd ‘(𝑄𝑎)) → (∀𝑏(𝑎ran (𝑄 ↾ ω)𝑏𝑏 = 𝑐) ↔ ∀𝑏(𝑎ran (𝑄 ↾ ω)𝑏𝑏 = (2nd ‘(𝑄𝑎)))))
5753, 56spcev 3606 . . . . . . 7 (∀𝑏(𝑎ran (𝑄 ↾ ω)𝑏𝑏 = (2nd ‘(𝑄𝑎))) → ∃𝑐𝑏(𝑎ran (𝑄 ↾ ω)𝑏𝑏 = 𝑐))
5852, 57syl 17 . . . . . 6 (𝑎 ∈ ω → ∃𝑐𝑏(𝑎ran (𝑄 ↾ ω)𝑏𝑏 = 𝑐))
59 eu6 2655 . . . . . 6 (∃!𝑏 𝑎ran (𝑄 ↾ ω)𝑏 ↔ ∃𝑐𝑏(𝑎ran (𝑄 ↾ ω)𝑏𝑏 = 𝑐))
6058, 59sylibr 236 . . . . 5 (𝑎 ∈ ω → ∃!𝑏 𝑎ran (𝑄 ↾ ω)𝑏)
6160rgen 3148 . . . 4 𝑎 ∈ ω ∃!𝑏 𝑎ran (𝑄 ↾ ω)𝑏
62 dff3 6860 . . . 4 (ran (𝑄 ↾ ω):ω⟶V ↔ (ran (𝑄 ↾ ω) ⊆ (ω × V) ∧ ∀𝑎 ∈ ω ∃!𝑏 𝑎ran (𝑄 ↾ ω)𝑏))
6317, 61, 62mpbir2an 709 . . 3 ran (𝑄 ↾ ω):ω⟶V
64 df-ima 5562 . . . 4 (𝑄 “ ω) = ran (𝑄 ↾ ω)
6564feq1i 6499 . . 3 ((𝑄 “ ω):ω⟶V ↔ ran (𝑄 ↾ ω):ω⟶V)
6663, 65mpbir 233 . 2 (𝑄 “ ω):ω⟶V
67 dffn2 6510 . 2 ((𝑄 “ ω) Fn ω ↔ (𝑄 “ ω):ω⟶V)
6866, 67mpbir 233 1 (𝑄 “ ω) Fn ω
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  wal 1531   = wceq 1533  wex 1776  wcel 2110  ∃!weu 2649  wral 3138  wrex 3139  Vcvv 3494  wss 3935  c0 4290  cop 4566   class class class wbr 5058   I cid 5453   × cxp 5547  ran crn 5550  cres 5551  cima 5552  suc csuc 6187   Fn wfn 6344  wf 6345  cfv 6349  (class class class)co 7150  cmpo 7152  ωcom 7574  2nd c2nd 7682  reccrdg 8039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040
This theorem is referenced by:  seqomlem3  8082  seqomlem4  8083  fnseqom  8085
  Copyright terms: Public domain W3C validator