Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqz Structured version   Visualization version   GIF version

Theorem seqz 12805
 Description: If the operation + has an absorbing element 𝑍 (a.k.a. zero element), then any sequence containing a 𝑍 evaluates to 𝑍. (Contributed by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqhomo.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqhomo.2 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
seqz.3 ((𝜑𝑥𝑆) → (𝑍 + 𝑥) = 𝑍)
seqz.4 ((𝜑𝑥𝑆) → (𝑥 + 𝑍) = 𝑍)
seqz.5 (𝜑𝐾 ∈ (𝑀...𝑁))
seqz.6 (𝜑𝑁𝑉)
seqz.7 (𝜑 → (𝐹𝐾) = 𝑍)
Assertion
Ref Expression
seqz (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍)
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝐾,𝑦   𝑥, + ,𝑦   𝑥,𝑆,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem seqz
StepHypRef Expression
1 seqz.5 . . . 4 (𝜑𝐾 ∈ (𝑀...𝑁))
2 elfzuz 12296 . . . 4 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
31, 2syl 17 . . 3 (𝜑𝐾 ∈ (ℤ𝑀))
4 eluzelz 11657 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
53, 4syl 17 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
6 seq1 12770 . . . . . . . 8 (𝐾 ∈ ℤ → (seq𝐾( + , 𝐹)‘𝐾) = (𝐹𝐾))
75, 6syl 17 . . . . . . 7 (𝜑 → (seq𝐾( + , 𝐹)‘𝐾) = (𝐹𝐾))
8 seqz.7 . . . . . . 7 (𝜑 → (𝐹𝐾) = 𝑍)
97, 8eqtrd 2655 . . . . . 6 (𝜑 → (seq𝐾( + , 𝐹)‘𝐾) = 𝑍)
10 seqeq1 12760 . . . . . . . 8 (𝐾 = 𝑀 → seq𝐾( + , 𝐹) = seq𝑀( + , 𝐹))
1110fveq1d 6160 . . . . . . 7 (𝐾 = 𝑀 → (seq𝐾( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝐾))
1211eqeq1d 2623 . . . . . 6 (𝐾 = 𝑀 → ((seq𝐾( + , 𝐹)‘𝐾) = 𝑍 ↔ (seq𝑀( + , 𝐹)‘𝐾) = 𝑍))
139, 12syl5ibcom 235 . . . . 5 (𝜑 → (𝐾 = 𝑀 → (seq𝑀( + , 𝐹)‘𝐾) = 𝑍))
14 eluzel2 11652 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
153, 14syl 17 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
16 seqm1 12774 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝐾) = ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + (𝐹𝐾)))
1715, 16sylan 488 . . . . . . 7 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝐾) = ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + (𝐹𝐾)))
188adantr 481 . . . . . . . . 9 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝐾) = 𝑍)
1918oveq2d 6631 . . . . . . . 8 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + (𝐹𝐾)) = ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + 𝑍))
20 eluzp1m1 11671 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ (ℤ‘(𝑀 + 1))) → (𝐾 − 1) ∈ (ℤ𝑀))
2115, 20sylan 488 . . . . . . . . . 10 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → (𝐾 − 1) ∈ (ℤ𝑀))
22 fzssp1 12342 . . . . . . . . . . . . . . 15 (𝑀...(𝐾 − 1)) ⊆ (𝑀...((𝐾 − 1) + 1))
235zcnd 11443 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ ℂ)
24 ax-1cn 9954 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
25 npcan 10250 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 − 1) + 1) = 𝐾)
2623, 24, 25sylancl 693 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐾 − 1) + 1) = 𝐾)
2726oveq2d 6631 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀...((𝐾 − 1) + 1)) = (𝑀...𝐾))
2822, 27syl5sseq 3638 . . . . . . . . . . . . . 14 (𝜑 → (𝑀...(𝐾 − 1)) ⊆ (𝑀...𝐾))
29 elfzuz3 12297 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))
301, 29syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ (ℤ𝐾))
31 fzss2 12339 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ𝐾) → (𝑀...𝐾) ⊆ (𝑀...𝑁))
3230, 31syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑀...𝐾) ⊆ (𝑀...𝑁))
3328, 32sstrd 3598 . . . . . . . . . . . . 13 (𝜑 → (𝑀...(𝐾 − 1)) ⊆ (𝑀...𝑁))
3433adantr 481 . . . . . . . . . . . 12 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...𝑁))
3534sselda 3588 . . . . . . . . . . 11 (((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝑥 ∈ (𝑀...𝑁))
36 seqhomo.2 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
3736adantlr 750 . . . . . . . . . . 11 (((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
3835, 37syldan 487 . . . . . . . . . 10 (((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → (𝐹𝑥) ∈ 𝑆)
39 seqhomo.1 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
4039adantlr 750 . . . . . . . . . 10 (((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
4121, 38, 40seqcl 12777 . . . . . . . . 9 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘(𝐾 − 1)) ∈ 𝑆)
42 seqz.4 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (𝑥 + 𝑍) = 𝑍)
4342ralrimiva 2962 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑆 (𝑥 + 𝑍) = 𝑍)
4443adantr 481 . . . . . . . . 9 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → ∀𝑥𝑆 (𝑥 + 𝑍) = 𝑍)
45 oveq1 6622 . . . . . . . . . . 11 (𝑥 = (seq𝑀( + , 𝐹)‘(𝐾 − 1)) → (𝑥 + 𝑍) = ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + 𝑍))
4645eqeq1d 2623 . . . . . . . . . 10 (𝑥 = (seq𝑀( + , 𝐹)‘(𝐾 − 1)) → ((𝑥 + 𝑍) = 𝑍 ↔ ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + 𝑍) = 𝑍))
4746rspcv 3295 . . . . . . . . 9 ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) ∈ 𝑆 → (∀𝑥𝑆 (𝑥 + 𝑍) = 𝑍 → ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + 𝑍) = 𝑍))
4841, 44, 47sylc 65 . . . . . . . 8 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + 𝑍) = 𝑍)
4919, 48eqtrd 2655 . . . . . . 7 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + (𝐹𝐾)) = 𝑍)
5017, 49eqtrd 2655 . . . . . 6 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝐾) = 𝑍)
5150ex 450 . . . . 5 (𝜑 → (𝐾 ∈ (ℤ‘(𝑀 + 1)) → (seq𝑀( + , 𝐹)‘𝐾) = 𝑍))
52 uzp1 11681 . . . . . 6 (𝐾 ∈ (ℤ𝑀) → (𝐾 = 𝑀𝐾 ∈ (ℤ‘(𝑀 + 1))))
533, 52syl 17 . . . . 5 (𝜑 → (𝐾 = 𝑀𝐾 ∈ (ℤ‘(𝑀 + 1))))
5413, 51, 53mpjaod 396 . . . 4 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = 𝑍)
5554, 8eqtr4d 2658 . . 3 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐹𝐾))
56 eqidd 2622 . . 3 ((𝜑𝑥 ∈ ((𝐾 + 1)...𝑁)) → (𝐹𝑥) = (𝐹𝑥))
573, 55, 30, 56seqfveq2 12779 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐹)‘𝑁))
58 fvex 6168 . . . . . 6 (𝐹𝐾) ∈ V
5958elsn 4170 . . . . 5 ((𝐹𝐾) ∈ {𝑍} ↔ (𝐹𝐾) = 𝑍)
608, 59sylibr 224 . . . 4 (𝜑 → (𝐹𝐾) ∈ {𝑍})
61 simprl 793 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ {𝑍} ∧ 𝑦𝑆)) → 𝑥 ∈ {𝑍})
62 velsn 4171 . . . . . . . 8 (𝑥 ∈ {𝑍} ↔ 𝑥 = 𝑍)
6361, 62sylib 208 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ {𝑍} ∧ 𝑦𝑆)) → 𝑥 = 𝑍)
6463oveq1d 6630 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ {𝑍} ∧ 𝑦𝑆)) → (𝑥 + 𝑦) = (𝑍 + 𝑦))
65 simprr 795 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ {𝑍} ∧ 𝑦𝑆)) → 𝑦𝑆)
66 seqz.3 . . . . . . . . 9 ((𝜑𝑥𝑆) → (𝑍 + 𝑥) = 𝑍)
6766ralrimiva 2962 . . . . . . . 8 (𝜑 → ∀𝑥𝑆 (𝑍 + 𝑥) = 𝑍)
6867adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ {𝑍} ∧ 𝑦𝑆)) → ∀𝑥𝑆 (𝑍 + 𝑥) = 𝑍)
69 oveq2 6623 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑍 + 𝑥) = (𝑍 + 𝑦))
7069eqeq1d 2623 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑍 + 𝑥) = 𝑍 ↔ (𝑍 + 𝑦) = 𝑍))
7170rspcv 3295 . . . . . . 7 (𝑦𝑆 → (∀𝑥𝑆 (𝑍 + 𝑥) = 𝑍 → (𝑍 + 𝑦) = 𝑍))
7265, 68, 71sylc 65 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ {𝑍} ∧ 𝑦𝑆)) → (𝑍 + 𝑦) = 𝑍)
7364, 72eqtrd 2655 . . . . 5 ((𝜑 ∧ (𝑥 ∈ {𝑍} ∧ 𝑦𝑆)) → (𝑥 + 𝑦) = 𝑍)
74 ovex 6643 . . . . . 6 (𝑥 + 𝑦) ∈ V
7574elsn 4170 . . . . 5 ((𝑥 + 𝑦) ∈ {𝑍} ↔ (𝑥 + 𝑦) = 𝑍)
7673, 75sylibr 224 . . . 4 ((𝜑 ∧ (𝑥 ∈ {𝑍} ∧ 𝑦𝑆)) → (𝑥 + 𝑦) ∈ {𝑍})
77 peano2uz 11701 . . . . . . . 8 (𝐾 ∈ (ℤ𝑀) → (𝐾 + 1) ∈ (ℤ𝑀))
783, 77syl 17 . . . . . . 7 (𝜑 → (𝐾 + 1) ∈ (ℤ𝑀))
79 fzss1 12338 . . . . . . 7 ((𝐾 + 1) ∈ (ℤ𝑀) → ((𝐾 + 1)...𝑁) ⊆ (𝑀...𝑁))
8078, 79syl 17 . . . . . 6 (𝜑 → ((𝐾 + 1)...𝑁) ⊆ (𝑀...𝑁))
8180sselda 3588 . . . . 5 ((𝜑𝑥 ∈ ((𝐾 + 1)...𝑁)) → 𝑥 ∈ (𝑀...𝑁))
8281, 36syldan 487 . . . 4 ((𝜑𝑥 ∈ ((𝐾 + 1)...𝑁)) → (𝐹𝑥) ∈ 𝑆)
8360, 76, 30, 82seqcl2 12775 . . 3 (𝜑 → (seq𝐾( + , 𝐹)‘𝑁) ∈ {𝑍})
84 elsni 4172 . . 3 ((seq𝐾( + , 𝐹)‘𝑁) ∈ {𝑍} → (seq𝐾( + , 𝐹)‘𝑁) = 𝑍)
8583, 84syl 17 . 2 (𝜑 → (seq𝐾( + , 𝐹)‘𝑁) = 𝑍)
8657, 85eqtrd 2655 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 383   ∧ wa 384   = wceq 1480   ∈ wcel 1987  ∀wral 2908   ⊆ wss 3560  {csn 4155  ‘cfv 5857  (class class class)co 6615  ℂcc 9894  1c1 9897   + caddc 9899   − cmin 10226  ℤcz 11337  ℤ≥cuz 11647  ...cfz 12284  seqcseq 12757 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-n0 11253  df-z 11338  df-uz 11648  df-fz 12285  df-seq 12758 This theorem is referenced by:  bcval5  13061  elqaalem2  24013  lgsne0  24994
 Copyright terms: Public domain W3C validator