MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  serfre Structured version   Visualization version   GIF version

Theorem serfre 13398
Description: An infinite series of real numbers is a function from to . (Contributed by NM, 18-Apr-2005.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
serf.1 𝑍 = (ℤ𝑀)
serf.2 (𝜑𝑀 ∈ ℤ)
serfre.3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
Assertion
Ref Expression
serfre (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍

Proof of Theorem serfre
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 serf.1 . 2 𝑍 = (ℤ𝑀)
2 serf.2 . 2 (𝜑𝑀 ∈ ℤ)
3 serfre.3 . 2 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
4 readdcl 10619 . . 3 ((𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑘 + 𝑥) ∈ ℝ)
54adantl 484 . 2 ((𝜑 ∧ (𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ)) → (𝑘 + 𝑥) ∈ ℝ)
61, 2, 3, 5seqf 13390 1 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wf 6350  cfv 6354  (class class class)co 7155  cr 10535   + caddc 10539  cz 11980  cuz 12242  seqcseq 13368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-n0 11897  df-z 11981  df-uz 12243  df-fz 12892  df-seq 13369
This theorem is referenced by:  iserle  15015  climserle  15018  iseraltlem2  15038  iseraltlem3  15039  iseralt  15040  isumrecl  15119  iserabs  15169  cvgcmp  15170  cvgcmpub  15171  cvgcmpce  15172  isumsup2  15200  climcndslem1  15203  climcndslem2  15204  climcnds  15205  effsumlt  15463  prmreclem6  16256  ovoliunlem1  24102  ovoliun  24105  ovoliun2  24106  voliunlem2  24151  voliunlem3  24152  vitalilem4  24211  mtest  24991  relgamcl  25638  basellem9  25665  rge0scvg  31192  esumpcvgval  31337  mblfinlem2  34929
  Copyright terms: Public domain W3C validator