Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  setc1strwun Structured version   Visualization version   GIF version

Theorem setc1strwun 16714
 Description: A constructed one-slot structure with the objects of the category of sets as base set in a weak universe. (Contributed by AV, 27-Mar-2020.)
Hypotheses
Ref Expression
setc1strwun.s 𝑆 = (SetCat‘𝑈)
setc1strwun.c 𝐶 = (Base‘𝑆)
setc1strwun.u (𝜑𝑈 ∈ WUni)
setc1strwun.o (𝜑 → ω ∈ 𝑈)
Assertion
Ref Expression
setc1strwun ((𝜑𝑋𝐶) → {⟨(Base‘ndx), 𝑋⟩} ∈ 𝑈)

Proof of Theorem setc1strwun
StepHypRef Expression
1 setc1strwun.s . . . . . 6 𝑆 = (SetCat‘𝑈)
2 setc1strwun.u . . . . . 6 (𝜑𝑈 ∈ WUni)
31, 2setcbas 16649 . . . . 5 (𝜑𝑈 = (Base‘𝑆))
4 setc1strwun.c . . . . 5 𝐶 = (Base‘𝑆)
53, 4syl6reqr 2674 . . . 4 (𝜑𝐶 = 𝑈)
65eleq2d 2684 . . 3 (𝜑 → (𝑋𝐶𝑋𝑈))
76biimpa 501 . 2 ((𝜑𝑋𝐶) → 𝑋𝑈)
8 eqid 2621 . . 3 {⟨(Base‘ndx), 𝑋⟩} = {⟨(Base‘ndx), 𝑋⟩}
9 setc1strwun.o . . 3 (𝜑 → ω ∈ 𝑈)
108, 2, 91strwun 15903 . 2 ((𝜑𝑋𝑈) → {⟨(Base‘ndx), 𝑋⟩} ∈ 𝑈)
117, 10syldan 487 1 ((𝜑𝑋𝐶) → {⟨(Base‘ndx), 𝑋⟩} ∈ 𝑈)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987  {csn 4148  ⟨cop 4154  ‘cfv 5847  ωcom 7012  WUnicwun 9466  ndxcnx 15778  Basecbs 15781  SetCatcsetc 16646 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-omul 7510  df-er 7687  df-ec 7689  df-qs 7693  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-wun 9468  df-ni 9638  df-pli 9639  df-mi 9640  df-lti 9641  df-plpq 9674  df-mpq 9675  df-ltpq 9676  df-enq 9677  df-nq 9678  df-erq 9679  df-plq 9680  df-mq 9681  df-1nq 9682  df-rq 9683  df-ltnq 9684  df-np 9747  df-plp 9749  df-ltp 9751  df-enr 9821  df-nr 9822  df-c 9886  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-fz 12269  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-hom 15887  df-cco 15888  df-setc 16647 This theorem is referenced by:  funcsetcestrclem2  16716  funcsetcestrclem3  16717  funcsetcestrclem7  16722
 Copyright terms: Public domain W3C validator