MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setcepi Structured version   Visualization version   GIF version

Theorem setcepi 16732
Description: An epimorphism of sets is a surjection. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
setcmon.c 𝐶 = (SetCat‘𝑈)
setcmon.u (𝜑𝑈𝑉)
setcmon.x (𝜑𝑋𝑈)
setcmon.y (𝜑𝑌𝑈)
setcepi.h 𝐸 = (Epi‘𝐶)
setcepi.2 (𝜑 → 2𝑜𝑈)
Assertion
Ref Expression
setcepi (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ 𝐹:𝑋onto𝑌))

Proof of Theorem setcepi
Dummy variables 𝑥 𝑔 𝑎 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2621 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2621 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
4 setcepi.h . . . . . 6 𝐸 = (Epi‘𝐶)
5 setcmon.u . . . . . . 7 (𝜑𝑈𝑉)
6 setcmon.c . . . . . . . 8 𝐶 = (SetCat‘𝑈)
76setccat 16729 . . . . . . 7 (𝑈𝑉𝐶 ∈ Cat)
85, 7syl 17 . . . . . 6 (𝜑𝐶 ∈ Cat)
9 setcmon.x . . . . . . 7 (𝜑𝑋𝑈)
106, 5setcbas 16722 . . . . . . 7 (𝜑𝑈 = (Base‘𝐶))
119, 10eleqtrd 2702 . . . . . 6 (𝜑𝑋 ∈ (Base‘𝐶))
12 setcmon.y . . . . . . 7 (𝜑𝑌𝑈)
1312, 10eleqtrd 2702 . . . . . 6 (𝜑𝑌 ∈ (Base‘𝐶))
141, 2, 3, 4, 8, 11, 13epihom 16396 . . . . 5 (𝜑 → (𝑋𝐸𝑌) ⊆ (𝑋(Hom ‘𝐶)𝑌))
1514sselda 3601 . . . 4 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
166, 5, 2, 9, 12elsetchom 16725 . . . . 5 (𝜑 → (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ↔ 𝐹:𝑋𝑌))
1716biimpa 501 . . . 4 ((𝜑𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)) → 𝐹:𝑋𝑌)
1815, 17syldan 487 . . 3 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝐹:𝑋𝑌)
19 frn 6051 . . . . 5 (𝐹:𝑋𝑌 → ran 𝐹𝑌)
2018, 19syl 17 . . . 4 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → ran 𝐹𝑌)
21 ffn 6043 . . . . . . . . . . . . . . 15 (𝐹:𝑋𝑌𝐹 Fn 𝑋)
2218, 21syl 17 . . . . . . . . . . . . . 14 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝐹 Fn 𝑋)
23 fnfvelrn 6354 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝑋𝑥𝑋) → (𝐹𝑥) ∈ ran 𝐹)
2422, 23sylan 488 . . . . . . . . . . . . 13 (((𝜑𝐹 ∈ (𝑋𝐸𝑌)) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ ran 𝐹)
2524iftrued 4092 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (𝑋𝐸𝑌)) ∧ 𝑥𝑋) → if((𝐹𝑥) ∈ ran 𝐹, 1𝑜, ∅) = 1𝑜)
2625mpteq2dva 4742 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → (𝑥𝑋 ↦ if((𝐹𝑥) ∈ ran 𝐹, 1𝑜, ∅)) = (𝑥𝑋 ↦ 1𝑜))
2718ffvelrnda 6357 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (𝑋𝐸𝑌)) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ 𝑌)
2818feqmptd 6247 . . . . . . . . . . . 12 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
29 eqidd 2622 . . . . . . . . . . . 12 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → (𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅)) = (𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅)))
30 eleq1 2688 . . . . . . . . . . . . 13 (𝑎 = (𝐹𝑥) → (𝑎 ∈ ran 𝐹 ↔ (𝐹𝑥) ∈ ran 𝐹))
3130ifbid 4106 . . . . . . . . . . . 12 (𝑎 = (𝐹𝑥) → if(𝑎 ∈ ran 𝐹, 1𝑜, ∅) = if((𝐹𝑥) ∈ ran 𝐹, 1𝑜, ∅))
3227, 28, 29, 31fmptco 6394 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → ((𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅)) ∘ 𝐹) = (𝑥𝑋 ↦ if((𝐹𝑥) ∈ ran 𝐹, 1𝑜, ∅)))
33 fconstmpt 5161 . . . . . . . . . . . . 13 (𝑌 × {1𝑜}) = (𝑎𝑌 ↦ 1𝑜)
3433a1i 11 . . . . . . . . . . . 12 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → (𝑌 × {1𝑜}) = (𝑎𝑌 ↦ 1𝑜))
35 eqidd 2622 . . . . . . . . . . . 12 (𝑎 = (𝐹𝑥) → 1𝑜 = 1𝑜)
3627, 28, 34, 35fmptco 6394 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → ((𝑌 × {1𝑜}) ∘ 𝐹) = (𝑥𝑋 ↦ 1𝑜))
3726, 32, 363eqtr4d 2665 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → ((𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅)) ∘ 𝐹) = ((𝑌 × {1𝑜}) ∘ 𝐹))
385adantr 481 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝑈𝑉)
399adantr 481 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝑋𝑈)
4012adantr 481 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝑌𝑈)
41 setcepi.2 . . . . . . . . . . . 12 (𝜑 → 2𝑜𝑈)
4241adantr 481 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 2𝑜𝑈)
43 eqid 2621 . . . . . . . . . . . . 13 (𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅)) = (𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅))
44 1onn 7716 . . . . . . . . . . . . . . . . . 18 1𝑜 ∈ ω
4544elexi 3211 . . . . . . . . . . . . . . . . 17 1𝑜 ∈ V
4645prid2 4296 . . . . . . . . . . . . . . . 16 1𝑜 ∈ {∅, 1𝑜}
47 df2o3 7570 . . . . . . . . . . . . . . . 16 2𝑜 = {∅, 1𝑜}
4846, 47eleqtrri 2699 . . . . . . . . . . . . . . 15 1𝑜 ∈ 2𝑜
49 0ex 4788 . . . . . . . . . . . . . . . . 17 ∅ ∈ V
5049prid1 4295 . . . . . . . . . . . . . . . 16 ∅ ∈ {∅, 1𝑜}
5150, 47eleqtrri 2699 . . . . . . . . . . . . . . 15 ∅ ∈ 2𝑜
5248, 51keepel 4153 . . . . . . . . . . . . . 14 if(𝑎 ∈ ran 𝐹, 1𝑜, ∅) ∈ 2𝑜
5352a1i 11 . . . . . . . . . . . . 13 (𝑎𝑌 → if(𝑎 ∈ ran 𝐹, 1𝑜, ∅) ∈ 2𝑜)
5443, 53fmpti 6381 . . . . . . . . . . . 12 (𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅)):𝑌⟶2𝑜
5554a1i 11 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → (𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅)):𝑌⟶2𝑜)
566, 38, 3, 39, 40, 42, 18, 55setcco 16727 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → ((𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅))(⟨𝑋, 𝑌⟩(comp‘𝐶)2𝑜)𝐹) = ((𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅)) ∘ 𝐹))
57 fconst6g 6092 . . . . . . . . . . . 12 (1𝑜 ∈ 2𝑜 → (𝑌 × {1𝑜}):𝑌⟶2𝑜)
5848, 57mp1i 13 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → (𝑌 × {1𝑜}):𝑌⟶2𝑜)
596, 38, 3, 39, 40, 42, 18, 58setcco 16727 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → ((𝑌 × {1𝑜})(⟨𝑋, 𝑌⟩(comp‘𝐶)2𝑜)𝐹) = ((𝑌 × {1𝑜}) ∘ 𝐹))
6037, 56, 593eqtr4d 2665 . . . . . . . . 9 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → ((𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅))(⟨𝑋, 𝑌⟩(comp‘𝐶)2𝑜)𝐹) = ((𝑌 × {1𝑜})(⟨𝑋, 𝑌⟩(comp‘𝐶)2𝑜)𝐹))
618adantr 481 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝐶 ∈ Cat)
6211adantr 481 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝑋 ∈ (Base‘𝐶))
6313adantr 481 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝑌 ∈ (Base‘𝐶))
6441, 10eleqtrd 2702 . . . . . . . . . . 11 (𝜑 → 2𝑜 ∈ (Base‘𝐶))
6564adantr 481 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 2𝑜 ∈ (Base‘𝐶))
66 simpr 477 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝐹 ∈ (𝑋𝐸𝑌))
676, 38, 2, 40, 42elsetchom 16725 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → ((𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅)) ∈ (𝑌(Hom ‘𝐶)2𝑜) ↔ (𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅)):𝑌⟶2𝑜))
6855, 67mpbird 247 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → (𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅)) ∈ (𝑌(Hom ‘𝐶)2𝑜))
696, 38, 2, 40, 42elsetchom 16725 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → ((𝑌 × {1𝑜}) ∈ (𝑌(Hom ‘𝐶)2𝑜) ↔ (𝑌 × {1𝑜}):𝑌⟶2𝑜))
7058, 69mpbird 247 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → (𝑌 × {1𝑜}) ∈ (𝑌(Hom ‘𝐶)2𝑜))
711, 2, 3, 4, 61, 62, 63, 65, 66, 68, 70epii 16397 . . . . . . . . 9 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → (((𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅))(⟨𝑋, 𝑌⟩(comp‘𝐶)2𝑜)𝐹) = ((𝑌 × {1𝑜})(⟨𝑋, 𝑌⟩(comp‘𝐶)2𝑜)𝐹) ↔ (𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅)) = (𝑌 × {1𝑜})))
7260, 71mpbid 222 . . . . . . . 8 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → (𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅)) = (𝑌 × {1𝑜}))
7372, 33syl6eq 2671 . . . . . . 7 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → (𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅)) = (𝑎𝑌 ↦ 1𝑜))
7452rgenw 2923 . . . . . . . 8 𝑎𝑌 if(𝑎 ∈ ran 𝐹, 1𝑜, ∅) ∈ 2𝑜
75 mpteqb 6297 . . . . . . . 8 (∀𝑎𝑌 if(𝑎 ∈ ran 𝐹, 1𝑜, ∅) ∈ 2𝑜 → ((𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅)) = (𝑎𝑌 ↦ 1𝑜) ↔ ∀𝑎𝑌 if(𝑎 ∈ ran 𝐹, 1𝑜, ∅) = 1𝑜))
7674, 75ax-mp 5 . . . . . . 7 ((𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅)) = (𝑎𝑌 ↦ 1𝑜) ↔ ∀𝑎𝑌 if(𝑎 ∈ ran 𝐹, 1𝑜, ∅) = 1𝑜)
7773, 76sylib 208 . . . . . 6 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → ∀𝑎𝑌 if(𝑎 ∈ ran 𝐹, 1𝑜, ∅) = 1𝑜)
78 1n0 7572 . . . . . . . . . 10 1𝑜 ≠ ∅
7978nesymi 2850 . . . . . . . . 9 ¬ ∅ = 1𝑜
80 iffalse 4093 . . . . . . . . . 10 𝑎 ∈ ran 𝐹 → if(𝑎 ∈ ran 𝐹, 1𝑜, ∅) = ∅)
8180eqeq1d 2623 . . . . . . . . 9 𝑎 ∈ ran 𝐹 → (if(𝑎 ∈ ran 𝐹, 1𝑜, ∅) = 1𝑜 ↔ ∅ = 1𝑜))
8279, 81mtbiri 317 . . . . . . . 8 𝑎 ∈ ran 𝐹 → ¬ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅) = 1𝑜)
8382con4i 113 . . . . . . 7 (if(𝑎 ∈ ran 𝐹, 1𝑜, ∅) = 1𝑜𝑎 ∈ ran 𝐹)
8483ralimi 2951 . . . . . 6 (∀𝑎𝑌 if(𝑎 ∈ ran 𝐹, 1𝑜, ∅) = 1𝑜 → ∀𝑎𝑌 𝑎 ∈ ran 𝐹)
8577, 84syl 17 . . . . 5 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → ∀𝑎𝑌 𝑎 ∈ ran 𝐹)
86 dfss3 3590 . . . . 5 (𝑌 ⊆ ran 𝐹 ↔ ∀𝑎𝑌 𝑎 ∈ ran 𝐹)
8785, 86sylibr 224 . . . 4 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝑌 ⊆ ran 𝐹)
8820, 87eqssd 3618 . . 3 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → ran 𝐹 = 𝑌)
89 dffo2 6117 . . 3 (𝐹:𝑋onto𝑌 ↔ (𝐹:𝑋𝑌 ∧ ran 𝐹 = 𝑌))
9018, 88, 89sylanbrc 698 . 2 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝐹:𝑋onto𝑌)
91 fof 6113 . . . . 5 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
9291adantl 482 . . . 4 ((𝜑𝐹:𝑋onto𝑌) → 𝐹:𝑋𝑌)
9316biimpar 502 . . . 4 ((𝜑𝐹:𝑋𝑌) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
9492, 93syldan 487 . . 3 ((𝜑𝐹:𝑋onto𝑌) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
9510adantr 481 . . . . . 6 ((𝜑𝐹:𝑋onto𝑌) → 𝑈 = (Base‘𝐶))
9695eleq2d 2686 . . . . 5 ((𝜑𝐹:𝑋onto𝑌) → (𝑧𝑈𝑧 ∈ (Base‘𝐶)))
975ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → 𝑈𝑉)
989ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → 𝑋𝑈)
9912ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → 𝑌𝑈)
100 simprl 794 . . . . . . . . . . 11 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → 𝑧𝑈)
10192adantr 481 . . . . . . . . . . 11 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → 𝐹:𝑋𝑌)
102 simprrl 804 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → 𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧))
1036, 97, 2, 99, 100elsetchom 16725 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ↔ 𝑔:𝑌𝑧))
104102, 103mpbid 222 . . . . . . . . . . 11 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → 𝑔:𝑌𝑧)
1056, 97, 3, 98, 99, 100, 101, 104setcco 16727 . . . . . . . . . 10 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) = (𝑔𝐹))
106 simprrr 805 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → ∈ (𝑌(Hom ‘𝐶)𝑧))
1076, 97, 2, 99, 100elsetchom 16725 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → ( ∈ (𝑌(Hom ‘𝐶)𝑧) ↔ :𝑌𝑧))
108106, 107mpbid 222 . . . . . . . . . . 11 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → :𝑌𝑧)
1096, 97, 3, 98, 99, 100, 101, 108setcco 16727 . . . . . . . . . 10 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → ((⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) = (𝐹))
110105, 109eqeq12d 2636 . . . . . . . . 9 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) = ((⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) ↔ (𝑔𝐹) = (𝐹)))
111 simplr 792 . . . . . . . . . . 11 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → 𝐹:𝑋onto𝑌)
112 ffn 6043 . . . . . . . . . . . 12 (𝑔:𝑌𝑧𝑔 Fn 𝑌)
113104, 112syl 17 . . . . . . . . . . 11 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → 𝑔 Fn 𝑌)
114 ffn 6043 . . . . . . . . . . . 12 (:𝑌𝑧 Fn 𝑌)
115108, 114syl 17 . . . . . . . . . . 11 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → Fn 𝑌)
116 cocan2 6544 . . . . . . . . . . 11 ((𝐹:𝑋onto𝑌𝑔 Fn 𝑌 Fn 𝑌) → ((𝑔𝐹) = (𝐹) ↔ 𝑔 = ))
117111, 113, 115, 116syl3anc 1325 . . . . . . . . . 10 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → ((𝑔𝐹) = (𝐹) ↔ 𝑔 = ))
118117biimpd 219 . . . . . . . . 9 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → ((𝑔𝐹) = (𝐹) → 𝑔 = ))
119110, 118sylbid 230 . . . . . . . 8 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) = ((⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) → 𝑔 = ))
120119anassrs 680 . . . . . . 7 ((((𝜑𝐹:𝑋onto𝑌) ∧ 𝑧𝑈) ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧))) → ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) = ((⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) → 𝑔 = ))
121120ralrimivva 2970 . . . . . 6 (((𝜑𝐹:𝑋onto𝑌) ∧ 𝑧𝑈) → ∀𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧)∀ ∈ (𝑌(Hom ‘𝐶)𝑧)((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) = ((⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) → 𝑔 = ))
122121ex 450 . . . . 5 ((𝜑𝐹:𝑋onto𝑌) → (𝑧𝑈 → ∀𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧)∀ ∈ (𝑌(Hom ‘𝐶)𝑧)((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) = ((⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) → 𝑔 = )))
12396, 122sylbird 250 . . . 4 ((𝜑𝐹:𝑋onto𝑌) → (𝑧 ∈ (Base‘𝐶) → ∀𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧)∀ ∈ (𝑌(Hom ‘𝐶)𝑧)((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) = ((⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) → 𝑔 = )))
124123ralrimiv 2964 . . 3 ((𝜑𝐹:𝑋onto𝑌) → ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧)∀ ∈ (𝑌(Hom ‘𝐶)𝑧)((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) = ((⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) → 𝑔 = ))
1251, 2, 3, 4, 8, 11, 13isepi2 16395 . . . 4 (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧)∀ ∈ (𝑌(Hom ‘𝐶)𝑧)((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) = ((⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) → 𝑔 = ))))
126125adantr 481 . . 3 ((𝜑𝐹:𝑋onto𝑌) → (𝐹 ∈ (𝑋𝐸𝑌) ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧)∀ ∈ (𝑌(Hom ‘𝐶)𝑧)((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) = ((⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) → 𝑔 = ))))
12794, 124, 126mpbir2and 957 . 2 ((𝜑𝐹:𝑋onto𝑌) → 𝐹 ∈ (𝑋𝐸𝑌))
12890, 127impbida 877 1 (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ 𝐹:𝑋onto𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1482  wcel 1989  wral 2911  wss 3572  c0 3913  ifcif 4084  {csn 4175  {cpr 4177  cop 4181  cmpt 4727   × cxp 5110  ran crn 5113  ccom 5116   Fn wfn 5881  wf 5882  ontowfo 5884  cfv 5886  (class class class)co 6647  ωcom 7062  1𝑜c1o 7550  2𝑜c2o 7551  Basecbs 15851  Hom chom 15946  compcco 15947  Catccat 16319  Epicepi 16383  SetCatcsetc 16719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-1st 7165  df-2nd 7166  df-tpos 7349  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-2o 7558  df-oadd 7561  df-er 7739  df-map 7856  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-nn 11018  df-2 11076  df-3 11077  df-4 11078  df-5 11079  df-6 11080  df-7 11081  df-8 11082  df-9 11083  df-n0 11290  df-z 11375  df-dec 11491  df-uz 11685  df-fz 12324  df-struct 15853  df-ndx 15854  df-slot 15855  df-base 15857  df-sets 15858  df-hom 15960  df-cco 15961  df-cat 16323  df-cid 16324  df-oppc 16366  df-mon 16384  df-epi 16385  df-setc 16720
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator