Mathbox for Emmett Weisz < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrec1lem4 Structured version   Visualization version   GIF version

Theorem setrec1lem4 42762
 Description: Lemma for setrec1 42763. If 𝑋 is recursively generated by 𝐹, then so is 𝑋 ∪ (𝐹‘𝐴). In the proof of setrec1 42763, the following is substituted for this theorem's 𝜑: (𝜑 ∧ (𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤 (𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) Therefore, we cannot declare 𝑧 to be a distinct variable from 𝜑, since we need it to appear as a bound variable in 𝜑. This theorem can be proven without the hypothesis Ⅎ𝑧𝜑, but the proof would be harder to read because theorems in deduction form would be interrupted by theorems like eximi 1802, making the antecedent of each line something more complicated than 𝜑. The proof of setrec1lem2 42760 could similarly be made easier to read by adding the hypothesis Ⅎ𝑧𝜑, but I had already finished the proof and decided to leave it as is. (Contributed by Emmett Weisz, 26-Nov-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
setrec1lem4.1 𝑧𝜑
setrec1lem4.2 𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
setrec1lem4.3 (𝜑𝐴 ∈ V)
setrec1lem4.4 (𝜑𝐴𝑋)
setrec1lem4.5 (𝜑𝑋𝑌)
Assertion
Ref Expression
setrec1lem4 (𝜑 → (𝑋 ∪ (𝐹𝐴)) ∈ 𝑌)
Distinct variable groups:   𝑦,𝑤,𝑧,𝐴   𝑤,𝐹,𝑦,𝑧   𝑤,𝑋,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑤)   𝑌(𝑦,𝑧,𝑤)

Proof of Theorem setrec1lem4
StepHypRef Expression
1 setrec1lem4.1 . . 3 𝑧𝜑
2 id 22 . . . . . . . 8 (𝑤𝑋𝑤𝑋)
3 ssun1 3809 . . . . . . . 8 𝑋 ⊆ (𝑋 ∪ (𝐹𝐴))
42, 3syl6ss 3648 . . . . . . 7 (𝑤𝑋𝑤 ⊆ (𝑋 ∪ (𝐹𝐴)))
54imim1i 63 . . . . . 6 ((𝑤 ⊆ (𝑋 ∪ (𝐹𝐴)) → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → (𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)))
65alimi 1779 . . . . 5 (∀𝑤(𝑤 ⊆ (𝑋 ∪ (𝐹𝐴)) → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → ∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)))
7 setrec1lem4.5 . . . . . . . 8 (𝜑𝑋𝑌)
8 setrec1lem4.2 . . . . . . . . 9 𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
98, 7setrec1lem1 42759 . . . . . . . 8 (𝜑 → (𝑋𝑌 ↔ ∀𝑧(∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑋𝑧)))
107, 9mpbid 222 . . . . . . 7 (𝜑 → ∀𝑧(∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑋𝑧))
11 sp 2091 . . . . . . 7 (∀𝑧(∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑋𝑧) → (∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑋𝑧))
1210, 11syl 17 . . . . . 6 (𝜑 → (∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑋𝑧))
13 setrec1lem4.4 . . . . . . . . 9 (𝜑𝐴𝑋)
14 sstr2 3643 . . . . . . . . 9 (𝐴𝑋 → (𝑋𝑧𝐴𝑧))
1513, 14syl 17 . . . . . . . 8 (𝜑 → (𝑋𝑧𝐴𝑧))
1612, 15syld 47 . . . . . . 7 (𝜑 → (∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝐴𝑧))
17 setrec1lem4.3 . . . . . . . . 9 (𝜑𝐴 ∈ V)
18 sseq1 3659 . . . . . . . . . 10 (𝑤 = 𝐴 → (𝑤𝑋𝐴𝑋))
19 sseq1 3659 . . . . . . . . . . 11 (𝑤 = 𝐴 → (𝑤𝑧𝐴𝑧))
20 fveq2 6229 . . . . . . . . . . . 12 (𝑤 = 𝐴 → (𝐹𝑤) = (𝐹𝐴))
2120sseq1d 3665 . . . . . . . . . . 11 (𝑤 = 𝐴 → ((𝐹𝑤) ⊆ 𝑧 ↔ (𝐹𝐴) ⊆ 𝑧))
2219, 21imbi12d 333 . . . . . . . . . 10 (𝑤 = 𝐴 → ((𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧) ↔ (𝐴𝑧 → (𝐹𝐴) ⊆ 𝑧)))
2318, 22imbi12d 333 . . . . . . . . 9 (𝑤 = 𝐴 → ((𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) ↔ (𝐴𝑋 → (𝐴𝑧 → (𝐹𝐴) ⊆ 𝑧))))
2417, 23spcdvw 42751 . . . . . . . 8 (𝜑 → (∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → (𝐴𝑋 → (𝐴𝑧 → (𝐹𝐴) ⊆ 𝑧))))
2513, 24mpid 44 . . . . . . 7 (𝜑 → (∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → (𝐴𝑧 → (𝐹𝐴) ⊆ 𝑧)))
2616, 25mpdd 43 . . . . . 6 (𝜑 → (∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → (𝐹𝐴) ⊆ 𝑧))
2712, 26jcad 554 . . . . 5 (𝜑 → (∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → (𝑋𝑧 ∧ (𝐹𝐴) ⊆ 𝑧)))
286, 27syl5 34 . . . 4 (𝜑 → (∀𝑤(𝑤 ⊆ (𝑋 ∪ (𝐹𝐴)) → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → (𝑋𝑧 ∧ (𝐹𝐴) ⊆ 𝑧)))
29 unss 3820 . . . 4 ((𝑋𝑧 ∧ (𝐹𝐴) ⊆ 𝑧) ↔ (𝑋 ∪ (𝐹𝐴)) ⊆ 𝑧)
3028, 29syl6ib 241 . . 3 (𝜑 → (∀𝑤(𝑤 ⊆ (𝑋 ∪ (𝐹𝐴)) → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → (𝑋 ∪ (𝐹𝐴)) ⊆ 𝑧))
311, 30alrimi 2120 . 2 (𝜑 → ∀𝑧(∀𝑤(𝑤 ⊆ (𝑋 ∪ (𝐹𝐴)) → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → (𝑋 ∪ (𝐹𝐴)) ⊆ 𝑧))
32 fvex 6239 . . . 4 (𝐹𝐴) ∈ V
33 unexg 7001 . . . 4 ((𝑋𝑌 ∧ (𝐹𝐴) ∈ V) → (𝑋 ∪ (𝐹𝐴)) ∈ V)
347, 32, 33sylancl 695 . . 3 (𝜑 → (𝑋 ∪ (𝐹𝐴)) ∈ V)
358, 34setrec1lem1 42759 . 2 (𝜑 → ((𝑋 ∪ (𝐹𝐴)) ∈ 𝑌 ↔ ∀𝑧(∀𝑤(𝑤 ⊆ (𝑋 ∪ (𝐹𝐴)) → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → (𝑋 ∪ (𝐹𝐴)) ⊆ 𝑧)))
3631, 35mpbird 247 1 (𝜑 → (𝑋 ∪ (𝐹𝐴)) ∈ 𝑌)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383  ∀wal 1521   = wceq 1523  Ⅎwnf 1748   ∈ wcel 2030  {cab 2637  Vcvv 3231   ∪ cun 3605   ⊆ wss 3607  ‘cfv 5926 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-iota 5889  df-fv 5934 This theorem is referenced by:  setrec1  42763
 Copyright terms: Public domain W3C validator