Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsnid Structured version   Visualization version   GIF version

Theorem setsnid 15962
 Description: Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
setsid.e 𝐸 = Slot (𝐸‘ndx)
setsnid.n (𝐸‘ndx) ≠ 𝐷
Assertion
Ref Expression
setsnid (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩))

Proof of Theorem setsnid
StepHypRef Expression
1 setsid.e . . . 4 𝐸 = Slot (𝐸‘ndx)
2 id 22 . . . 4 (𝑊 ∈ V → 𝑊 ∈ V)
31, 2strfvnd 15923 . . 3 (𝑊 ∈ V → (𝐸𝑊) = (𝑊‘(𝐸‘ndx)))
4 ovex 6718 . . . . 5 (𝑊 sSet ⟨𝐷, 𝐶⟩) ∈ V
54, 1strfvn 15926 . . . 4 (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)) = ((𝑊 sSet ⟨𝐷, 𝐶⟩)‘(𝐸‘ndx))
6 setsres 15948 . . . . . 6 (𝑊 ∈ V → ((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷})) = (𝑊 ↾ (V ∖ {𝐷})))
76fveq1d 6231 . . . . 5 (𝑊 ∈ V → (((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)))
8 fvex 6239 . . . . . . 7 (𝐸‘ndx) ∈ V
9 setsnid.n . . . . . . 7 (𝐸‘ndx) ≠ 𝐷
10 eldifsn 4350 . . . . . . 7 ((𝐸‘ndx) ∈ (V ∖ {𝐷}) ↔ ((𝐸‘ndx) ∈ V ∧ (𝐸‘ndx) ≠ 𝐷))
118, 9, 10mpbir2an 975 . . . . . 6 (𝐸‘ndx) ∈ (V ∖ {𝐷})
12 fvres 6245 . . . . . 6 ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → (((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet ⟨𝐷, 𝐶⟩)‘(𝐸‘ndx)))
1311, 12ax-mp 5 . . . . 5 (((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet ⟨𝐷, 𝐶⟩)‘(𝐸‘ndx))
14 fvres 6245 . . . . . 6 ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx)))
1511, 14ax-mp 5 . . . . 5 ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx))
167, 13, 153eqtr3g 2708 . . . 4 (𝑊 ∈ V → ((𝑊 sSet ⟨𝐷, 𝐶⟩)‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx)))
175, 16syl5eq 2697 . . 3 (𝑊 ∈ V → (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)) = (𝑊‘(𝐸‘ndx)))
183, 17eqtr4d 2688 . 2 (𝑊 ∈ V → (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)))
191str0 15958 . . 3 ∅ = (𝐸‘∅)
20 fvprc 6223 . . 3 𝑊 ∈ V → (𝐸𝑊) = ∅)
21 reldmsets 15933 . . . . 5 Rel dom sSet
2221ovprc1 6724 . . . 4 𝑊 ∈ V → (𝑊 sSet ⟨𝐷, 𝐶⟩) = ∅)
2322fveq2d 6233 . . 3 𝑊 ∈ V → (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)) = (𝐸‘∅))
2419, 20, 233eqtr4a 2711 . 2 𝑊 ∈ V → (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)))
2518, 24pm2.61i 176 1 (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  Vcvv 3231   ∖ cdif 3604  ∅c0 3948  {csn 4210  ⟨cop 4216   ↾ cres 5145  ‘cfv 5926  (class class class)co 6690  ndxcnx 15901   sSet csts 15902  Slot cslot 15903 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-res 5155  df-iota 5889  df-fun 5928  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-slot 15908  df-sets 15911 This theorem is referenced by:  resslem  15980  oppchomfval  16421  oppcbas  16425  rescbas  16536  rescco  16539  rescabs  16540  odubas  17180  oppglem  17826  mgplem  18540  opprlem  18674  rmodislmod  18979  sralem  19225  srasca  19229  sravsca  19230  opsrbaslem  19525  opsrbaslemOLD  19526  zlmlem  19913  zlmsca  19917  znbaslem  19934  znbaslemOLD  19935  thlbas  20088  thlle  20089  matbas  20267  matplusg  20268  matsca  20269  matvsca  20270  tuslem  22118  setsmsbas  22327  setsmsds  22328  tnglem  22491  tngds  22499  ttgval  25800  ttglem  25801  cchhllem  25812  setsvtx  25972  resvlem  29959  zlmds  30136  zlmtset  30137  hlhilslem  37547  cznrnglem  42278  cznabel  42279  cznrng  42280
 Copyright terms: Public domain W3C validator