MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsnid Structured version   Visualization version   GIF version

Theorem setsnid 15692
Description: Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
setsid.e 𝐸 = Slot (𝐸‘ndx)
setsnid.n (𝐸‘ndx) ≠ 𝐷
Assertion
Ref Expression
setsnid (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩))

Proof of Theorem setsnid
StepHypRef Expression
1 setsid.e . . . 4 𝐸 = Slot (𝐸‘ndx)
2 id 22 . . . 4 (𝑊 ∈ V → 𝑊 ∈ V)
31, 2strfvnd 15659 . . 3 (𝑊 ∈ V → (𝐸𝑊) = (𝑊‘(𝐸‘ndx)))
4 ovex 6555 . . . . 5 (𝑊 sSet ⟨𝐷, 𝐶⟩) ∈ V
54, 1strfvn 15661 . . . 4 (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)) = ((𝑊 sSet ⟨𝐷, 𝐶⟩)‘(𝐸‘ndx))
6 setsres 15678 . . . . . 6 (𝑊 ∈ V → ((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷})) = (𝑊 ↾ (V ∖ {𝐷})))
76fveq1d 6090 . . . . 5 (𝑊 ∈ V → (((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)))
8 fvex 6098 . . . . . . 7 (𝐸‘ndx) ∈ V
9 setsnid.n . . . . . . 7 (𝐸‘ndx) ≠ 𝐷
10 eldifsn 4260 . . . . . . 7 ((𝐸‘ndx) ∈ (V ∖ {𝐷}) ↔ ((𝐸‘ndx) ∈ V ∧ (𝐸‘ndx) ≠ 𝐷))
118, 9, 10mpbir2an 957 . . . . . 6 (𝐸‘ndx) ∈ (V ∖ {𝐷})
12 fvres 6102 . . . . . 6 ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → (((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet ⟨𝐷, 𝐶⟩)‘(𝐸‘ndx)))
1311, 12ax-mp 5 . . . . 5 (((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet ⟨𝐷, 𝐶⟩)‘(𝐸‘ndx))
14 fvres 6102 . . . . . 6 ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx)))
1511, 14ax-mp 5 . . . . 5 ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx))
167, 13, 153eqtr3g 2667 . . . 4 (𝑊 ∈ V → ((𝑊 sSet ⟨𝐷, 𝐶⟩)‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx)))
175, 16syl5eq 2656 . . 3 (𝑊 ∈ V → (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)) = (𝑊‘(𝐸‘ndx)))
183, 17eqtr4d 2647 . 2 (𝑊 ∈ V → (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)))
191str0 15688 . . 3 ∅ = (𝐸‘∅)
20 fvprc 6082 . . 3 𝑊 ∈ V → (𝐸𝑊) = ∅)
21 reldmsets 15667 . . . . 5 Rel dom sSet
2221ovprc1 6560 . . . 4 𝑊 ∈ V → (𝑊 sSet ⟨𝐷, 𝐶⟩) = ∅)
2322fveq2d 6092 . . 3 𝑊 ∈ V → (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)) = (𝐸‘∅))
2419, 20, 233eqtr4a 2670 . 2 𝑊 ∈ V → (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)))
2518, 24pm2.61i 175 1 (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1475  wcel 1977  wne 2780  Vcvv 3173  cdif 3537  c0 3874  {csn 4125  cop 4131  cres 5030  cfv 5790  (class class class)co 6527  ndxcnx 15641   sSet csts 15642  Slot cslot 15643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4368  df-br 4579  df-opab 4639  df-mpt 4640  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-res 5040  df-iota 5754  df-fun 5792  df-fv 5798  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-slot 15648  df-sets 15650
This theorem is referenced by:  resslem  15709  oppchomfval  16146  oppcbas  16150  rescbas  16261  rescco  16264  rescabs  16265  odubas  16905  oppglem  17552  mgplem  18266  opprlem  18400  sralem  18947  srasca  18951  sravsca  18952  opsrbaslem  19247  opsrbaslemOLD  19248  zlmlem  19632  zlmsca  19636  znbaslem  19653  znbaslemOLD  19654  thlbas  19807  thlle  19808  matbas  19986  matplusg  19987  matsca  19988  matvsca  19989  tuslem  21829  setsmsbas  22038  setsmsds  22039  tnglem  22202  tngds  22210  ttgval  25501  ttglem  25502  cchhllem  25513  resvlem  28956  zlmds  29130  zlmtset  29131  hlhilslem  36042  uhgrstrrepe  40296  cznrnglem  41737  cznabel  41738  cznrng  41739
  Copyright terms: Public domain W3C validator