MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsstruct Structured version   Visualization version   GIF version

Theorem setsstruct 16525
Description: An extensible structure with a replaced slot is an extensible structure. (Contributed by AV, 9-Jun-2021.) (Revised by AV, 14-Nov-2021.)
Assertion
Ref Expression
setsstruct ((𝐸𝑉𝐼 ∈ (ℤ𝑀) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩) → (𝐺 sSet ⟨𝐼, 𝐸⟩) Struct ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩)

Proof of Theorem setsstruct
StepHypRef Expression
1 isstruct 16498 . . . . . 6 (𝐺 Struct ⟨𝑀, 𝑁⟩ ↔ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (𝑀...𝑁)))
2 simp2 1133 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → 𝐺 Struct ⟨𝑀, 𝑁⟩)
3 simp3l 1197 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → 𝐸𝑉)
4 1z 12015 . . . . . . . . . . . . . . . 16 1 ∈ ℤ
5 nnge1 11668 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
6 eluzuzle 12255 . . . . . . . . . . . . . . . 16 ((1 ∈ ℤ ∧ 1 ≤ 𝑀) → (𝐼 ∈ (ℤ𝑀) → 𝐼 ∈ (ℤ‘1)))
74, 5, 6sylancr 589 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → (𝐼 ∈ (ℤ𝑀) → 𝐼 ∈ (ℤ‘1)))
8 elnnuz 12285 . . . . . . . . . . . . . . 15 (𝐼 ∈ ℕ ↔ 𝐼 ∈ (ℤ‘1))
97, 8syl6ibr 254 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (𝐼 ∈ (ℤ𝑀) → 𝐼 ∈ ℕ))
109adantld 493 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → ((𝐸𝑉𝐼 ∈ (ℤ𝑀)) → 𝐼 ∈ ℕ))
11103ad2ant1 1129 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) → ((𝐸𝑉𝐼 ∈ (ℤ𝑀)) → 𝐼 ∈ ℕ))
1211a1d 25 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) → (𝐺 Struct ⟨𝑀, 𝑁⟩ → ((𝐸𝑉𝐼 ∈ (ℤ𝑀)) → 𝐼 ∈ ℕ)))
13123imp 1107 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → 𝐼 ∈ ℕ)
142, 3, 133jca 1124 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → (𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ 𝐸𝑉𝐼 ∈ ℕ))
15 op1stg 7703 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (1st ‘⟨𝑀, 𝑁⟩) = 𝑀)
1615breq2d 5080 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩) ↔ 𝐼𝑀))
17 eqidd 2824 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐼 = 𝐼)
1816, 17, 15ifbieq12d 4496 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)) = if(𝐼𝑀, 𝐼, 𝑀))
19183adant3 1128 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) → if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)) = if(𝐼𝑀, 𝐼, 𝑀))
2019adantr 483 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)) = if(𝐼𝑀, 𝐼, 𝑀))
21 eluz2 12252 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼))
22 zre 11988 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ ℤ → 𝐼 ∈ ℝ)
2322rexrd 10693 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ ℤ → 𝐼 ∈ ℝ*)
24233ad2ant2 1130 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼) → 𝐼 ∈ ℝ*)
25 zre 11988 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2625rexrd 10693 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ*)
27263ad2ant1 1129 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼) → 𝑀 ∈ ℝ*)
28 simp3 1134 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼) → 𝑀𝐼)
2924, 27, 283jca 1124 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼) → (𝐼 ∈ ℝ*𝑀 ∈ ℝ*𝑀𝐼))
3029a1d 25 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) → (𝐼 ∈ ℝ*𝑀 ∈ ℝ*𝑀𝐼)))
3121, 30sylbi 219 . . . . . . . . . . . . . . 15 (𝐼 ∈ (ℤ𝑀) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) → (𝐼 ∈ ℝ*𝑀 ∈ ℝ*𝑀𝐼)))
3231adantl 484 . . . . . . . . . . . . . 14 ((𝐸𝑉𝐼 ∈ (ℤ𝑀)) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) → (𝐼 ∈ ℝ*𝑀 ∈ ℝ*𝑀𝐼)))
3332impcom 410 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → (𝐼 ∈ ℝ*𝑀 ∈ ℝ*𝑀𝐼))
34 xrmineq 12576 . . . . . . . . . . . . 13 ((𝐼 ∈ ℝ*𝑀 ∈ ℝ*𝑀𝐼) → if(𝐼𝑀, 𝐼, 𝑀) = 𝑀)
3533, 34syl 17 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → if(𝐼𝑀, 𝐼, 𝑀) = 𝑀)
3620, 35eqtr2d 2859 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → 𝑀 = if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)))
37363adant2 1127 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → 𝑀 = if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)))
38 op2ndg 7704 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2nd ‘⟨𝑀, 𝑁⟩) = 𝑁)
3938eqcomd 2829 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 = (2nd ‘⟨𝑀, 𝑁⟩))
4039breq2d 5080 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐼𝑁𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩)))
4140, 39, 17ifbieq12d 4496 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → if(𝐼𝑁, 𝑁, 𝐼) = if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼))
42413adant3 1128 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) → if(𝐼𝑁, 𝑁, 𝐼) = if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼))
43423ad2ant1 1129 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → if(𝐼𝑁, 𝑁, 𝐼) = if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼))
4437, 43opeq12d 4813 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩ = ⟨if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)), if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼)⟩)
4514, 44jca 514 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → ((𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ 𝐸𝑉𝐼 ∈ ℕ) ∧ ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩ = ⟨if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)), if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼)⟩))
46453exp 1115 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) → (𝐺 Struct ⟨𝑀, 𝑁⟩ → ((𝐸𝑉𝐼 ∈ (ℤ𝑀)) → ((𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ 𝐸𝑉𝐼 ∈ ℕ) ∧ ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩ = ⟨if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)), if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼)⟩))))
47463ad2ant1 1129 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (𝑀...𝑁)) → (𝐺 Struct ⟨𝑀, 𝑁⟩ → ((𝐸𝑉𝐼 ∈ (ℤ𝑀)) → ((𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ 𝐸𝑉𝐼 ∈ ℕ) ∧ ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩ = ⟨if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)), if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼)⟩))))
481, 47sylbi 219 . . . . 5 (𝐺 Struct ⟨𝑀, 𝑁⟩ → (𝐺 Struct ⟨𝑀, 𝑁⟩ → ((𝐸𝑉𝐼 ∈ (ℤ𝑀)) → ((𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ 𝐸𝑉𝐼 ∈ ℕ) ∧ ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩ = ⟨if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)), if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼)⟩))))
4948pm2.43i 52 . . . 4 (𝐺 Struct ⟨𝑀, 𝑁⟩ → ((𝐸𝑉𝐼 ∈ (ℤ𝑀)) → ((𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ 𝐸𝑉𝐼 ∈ ℕ) ∧ ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩ = ⟨if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)), if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼)⟩)))
5049expdcom 417 . . 3 (𝐸𝑉 → (𝐼 ∈ (ℤ𝑀) → (𝐺 Struct ⟨𝑀, 𝑁⟩ → ((𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ 𝐸𝑉𝐼 ∈ ℕ) ∧ ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩ = ⟨if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)), if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼)⟩))))
51503imp 1107 . 2 ((𝐸𝑉𝐼 ∈ (ℤ𝑀) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩) → ((𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ 𝐸𝑉𝐼 ∈ ℕ) ∧ ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩ = ⟨if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)), if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼)⟩))
52 setsstruct2 16523 . 2 (((𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ 𝐸𝑉𝐼 ∈ ℕ) ∧ ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩ = ⟨if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)), if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼)⟩) → (𝐺 sSet ⟨𝐼, 𝐸⟩) Struct ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩)
5351, 52syl 17 1 ((𝐸𝑉𝐼 ∈ (ℤ𝑀) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩) → (𝐺 sSet ⟨𝐼, 𝐸⟩) Struct ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  cdif 3935  wss 3938  c0 4293  ifcif 4469  {csn 4569  cop 4575   class class class wbr 5068  dom cdm 5557  Fun wfun 6351  cfv 6357  (class class class)co 7158  1st c1st 7689  2nd c2nd 7690  1c1 10540  *cxr 10676  cle 10678  cn 11640  cz 11984  cuz 12246  ...cfz 12895   Struct cstr 16481   sSet csts 16483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-struct 16487  df-sets 16492
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator