MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsstruct2 Structured version   Visualization version   GIF version

Theorem setsstruct2 16515
Description: An extensible structure with a replaced slot is an extensible structure. (Contributed by AV, 14-Nov-2021.)
Assertion
Ref Expression
setsstruct2 (((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) ∧ 𝑌 = ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩) → (𝐺 sSet ⟨𝐼, 𝐸⟩) Struct 𝑌)

Proof of Theorem setsstruct2
StepHypRef Expression
1 isstruct2 16487 . . . . . . 7 (𝐺 Struct 𝑋 ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (...‘𝑋)))
2 elin 4168 . . . . . . . . 9 (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ↔ (𝑋 ∈ ≤ ∧ 𝑋 ∈ (ℕ × ℕ)))
3 elxp6 7717 . . . . . . . . . . 11 (𝑋 ∈ (ℕ × ℕ) ↔ (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ)))
4 eleq1 2900 . . . . . . . . . . . . 13 (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (𝑋 ∈ ≤ ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ))
54adantr 483 . . . . . . . . . . . 12 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ)) → (𝑋 ∈ ≤ ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ))
6 simp3 1134 . . . . . . . . . . . . . . . . . . 19 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → 𝐼 ∈ ℕ)
7 simp1l 1193 . . . . . . . . . . . . . . . . . . 19 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → (1st𝑋) ∈ ℕ)
86, 7ifcld 4511 . . . . . . . . . . . . . . . . . 18 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)) ∈ ℕ)
98nnred 11647 . . . . . . . . . . . . . . . . 17 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)) ∈ ℝ)
106nnred 11647 . . . . . . . . . . . . . . . . 17 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → 𝐼 ∈ ℝ)
11 simp1r 1194 . . . . . . . . . . . . . . . . . . 19 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → (2nd𝑋) ∈ ℕ)
1211, 6ifcld 4511 . . . . . . . . . . . . . . . . . 18 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼) ∈ ℕ)
1312nnred 11647 . . . . . . . . . . . . . . . . 17 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼) ∈ ℝ)
14 nnre 11639 . . . . . . . . . . . . . . . . . . . . . 22 ((1st𝑋) ∈ ℕ → (1st𝑋) ∈ ℝ)
1514adantr 483 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) → (1st𝑋) ∈ ℝ)
16 nnre 11639 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ ℕ → 𝐼 ∈ ℝ)
1715, 16anim12i 614 . . . . . . . . . . . . . . . . . . . 20 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ 𝐼 ∈ ℕ) → ((1st𝑋) ∈ ℝ ∧ 𝐼 ∈ ℝ))
18173adant2 1127 . . . . . . . . . . . . . . . . . . 19 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → ((1st𝑋) ∈ ℝ ∧ 𝐼 ∈ ℝ))
1918ancomd 464 . . . . . . . . . . . . . . . . . 18 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → (𝐼 ∈ ℝ ∧ (1st𝑋) ∈ ℝ))
20 min1 12576 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∈ ℝ ∧ (1st𝑋) ∈ ℝ) → if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)) ≤ 𝐼)
2119, 20syl 17 . . . . . . . . . . . . . . . . 17 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)) ≤ 𝐼)
22 nnre 11639 . . . . . . . . . . . . . . . . . . . . . 22 ((2nd𝑋) ∈ ℕ → (2nd𝑋) ∈ ℝ)
2322adantl 484 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) → (2nd𝑋) ∈ ℝ)
2423, 16anim12i 614 . . . . . . . . . . . . . . . . . . . 20 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ 𝐼 ∈ ℕ) → ((2nd𝑋) ∈ ℝ ∧ 𝐼 ∈ ℝ))
25243adant2 1127 . . . . . . . . . . . . . . . . . . 19 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → ((2nd𝑋) ∈ ℝ ∧ 𝐼 ∈ ℝ))
2625ancomd 464 . . . . . . . . . . . . . . . . . 18 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → (𝐼 ∈ ℝ ∧ (2nd𝑋) ∈ ℝ))
27 max1 12572 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∈ ℝ ∧ (2nd𝑋) ∈ ℝ) → 𝐼 ≤ if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼))
2826, 27syl 17 . . . . . . . . . . . . . . . . 17 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → 𝐼 ≤ if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼))
299, 10, 13, 21, 28letrd 10791 . . . . . . . . . . . . . . . 16 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)) ≤ if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼))
30 df-br 5059 . . . . . . . . . . . . . . . 16 (if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)) ≤ if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼) ↔ ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ≤ )
3129, 30sylib 220 . . . . . . . . . . . . . . 15 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ≤ )
328, 12opelxpd 5587 . . . . . . . . . . . . . . 15 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ (ℕ × ℕ))
3331, 32elind 4170 . . . . . . . . . . . . . 14 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ)))
34333exp 1115 . . . . . . . . . . . . 13 (((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) → (⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ → (𝐼 ∈ ℕ → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ)))))
3534adantl 484 . . . . . . . . . . . 12 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ)) → (⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ → (𝐼 ∈ ℕ → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ)))))
365, 35sylbid 242 . . . . . . . . . . 11 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ)) → (𝑋 ∈ ≤ → (𝐼 ∈ ℕ → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ)))))
373, 36sylbi 219 . . . . . . . . . 10 (𝑋 ∈ (ℕ × ℕ) → (𝑋 ∈ ≤ → (𝐼 ∈ ℕ → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ)))))
3837impcom 410 . . . . . . . . 9 ((𝑋 ∈ ≤ ∧ 𝑋 ∈ (ℕ × ℕ)) → (𝐼 ∈ ℕ → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ))))
392, 38sylbi 219 . . . . . . . 8 (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) → (𝐼 ∈ ℕ → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ))))
40393ad2ant1 1129 . . . . . . 7 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (...‘𝑋)) → (𝐼 ∈ ℕ → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ))))
411, 40sylbi 219 . . . . . 6 (𝐺 Struct 𝑋 → (𝐼 ∈ ℕ → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ))))
4241imp 409 . . . . 5 ((𝐺 Struct 𝑋𝐼 ∈ ℕ) → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ)))
43423adant2 1127 . . . 4 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ)))
44 structex 16488 . . . . . . 7 (𝐺 Struct 𝑋𝐺 ∈ V)
45 structn0fun 16489 . . . . . . 7 (𝐺 Struct 𝑋 → Fun (𝐺 ∖ {∅}))
4644, 45jca 514 . . . . . 6 (𝐺 Struct 𝑋 → (𝐺 ∈ V ∧ Fun (𝐺 ∖ {∅})))
47463ad2ant1 1129 . . . . 5 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → (𝐺 ∈ V ∧ Fun (𝐺 ∖ {∅})))
48 simp3 1134 . . . . 5 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → 𝐼 ∈ ℕ)
49 simp2 1133 . . . . 5 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → 𝐸𝑉)
50 setsfun0 16513 . . . . 5 (((𝐺 ∈ V ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ ℕ ∧ 𝐸𝑉)) → Fun ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}))
5147, 48, 49, 50syl12anc 834 . . . 4 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → Fun ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}))
52443ad2ant1 1129 . . . . . 6 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → 𝐺 ∈ V)
53 setsdm 16511 . . . . . 6 ((𝐺 ∈ V ∧ 𝐸𝑉) → dom (𝐺 sSet ⟨𝐼, 𝐸⟩) = (dom 𝐺 ∪ {𝐼}))
5452, 49, 53syl2anc 586 . . . . 5 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → dom (𝐺 sSet ⟨𝐼, 𝐸⟩) = (dom 𝐺 ∪ {𝐼}))
55 fveq2 6664 . . . . . . . . . . . . . . . . 17 (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (...‘𝑋) = (...‘⟨(1st𝑋), (2nd𝑋)⟩))
56 df-ov 7153 . . . . . . . . . . . . . . . . 17 ((1st𝑋)...(2nd𝑋)) = (...‘⟨(1st𝑋), (2nd𝑋)⟩)
5755, 56syl6eqr 2874 . . . . . . . . . . . . . . . 16 (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (...‘𝑋) = ((1st𝑋)...(2nd𝑋)))
5857sseq2d 3998 . . . . . . . . . . . . . . 15 (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (dom 𝐺 ⊆ (...‘𝑋) ↔ dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋))))
5958adantr 483 . . . . . . . . . . . . . 14 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ)) → (dom 𝐺 ⊆ (...‘𝑋) ↔ dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋))))
60 df-3an 1085 . . . . . . . . . . . . . . . . . 18 (((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ ∧ 𝐼 ∈ ℕ) ↔ (((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ 𝐼 ∈ ℕ))
61 nnz 11998 . . . . . . . . . . . . . . . . . . . . 21 ((1st𝑋) ∈ ℕ → (1st𝑋) ∈ ℤ)
62 nnz 11998 . . . . . . . . . . . . . . . . . . . . 21 ((2nd𝑋) ∈ ℕ → (2nd𝑋) ∈ ℤ)
63 nnz 11998 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ ℕ → 𝐼 ∈ ℤ)
6461, 62, 633anim123i 1147 . . . . . . . . . . . . . . . . . . . 20 (((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ ∧ 𝐼 ∈ ℕ) → ((1st𝑋) ∈ ℤ ∧ (2nd𝑋) ∈ ℤ ∧ 𝐼 ∈ ℤ))
65 ssfzunsnext 12946 . . . . . . . . . . . . . . . . . . . . 21 ((dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋)) ∧ ((1st𝑋) ∈ ℤ ∧ (2nd𝑋) ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (dom 𝐺 ∪ {𝐼}) ⊆ (if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋))...if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)))
66 df-ov 7153 . . . . . . . . . . . . . . . . . . . . 21 (if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋))...if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)) = (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩)
6765, 66sseqtrdi 4016 . . . . . . . . . . . . . . . . . . . 20 ((dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋)) ∧ ((1st𝑋) ∈ ℤ ∧ (2nd𝑋) ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))
6864, 67sylan2 594 . . . . . . . . . . . . . . . . . . 19 ((dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋)) ∧ ((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ ∧ 𝐼 ∈ ℕ)) → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))
6968ex 415 . . . . . . . . . . . . . . . . . 18 (dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋)) → (((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ ∧ 𝐼 ∈ ℕ) → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩)))
7060, 69syl5bir 245 . . . . . . . . . . . . . . . . 17 (dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋)) → ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ 𝐼 ∈ ℕ) → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩)))
7170expd 418 . . . . . . . . . . . . . . . 16 (dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋)) → (((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))))
7271com12 32 . . . . . . . . . . . . . . 15 (((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) → (dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋)) → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))))
7372adantl 484 . . . . . . . . . . . . . 14 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ)) → (dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋)) → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))))
7459, 73sylbid 242 . . . . . . . . . . . . 13 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ)) → (dom 𝐺 ⊆ (...‘𝑋) → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))))
753, 74sylbi 219 . . . . . . . . . . . 12 (𝑋 ∈ (ℕ × ℕ) → (dom 𝐺 ⊆ (...‘𝑋) → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))))
7675adantl 484 . . . . . . . . . . 11 ((𝑋 ∈ ≤ ∧ 𝑋 ∈ (ℕ × ℕ)) → (dom 𝐺 ⊆ (...‘𝑋) → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))))
772, 76sylbi 219 . . . . . . . . . 10 (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) → (dom 𝐺 ⊆ (...‘𝑋) → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))))
7877imp 409 . . . . . . . . 9 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ dom 𝐺 ⊆ (...‘𝑋)) → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩)))
79783adant2 1127 . . . . . . . 8 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (...‘𝑋)) → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩)))
801, 79sylbi 219 . . . . . . 7 (𝐺 Struct 𝑋 → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩)))
8180imp 409 . . . . . 6 ((𝐺 Struct 𝑋𝐼 ∈ ℕ) → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))
82813adant2 1127 . . . . 5 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))
8354, 82eqsstrd 4004 . . . 4 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → dom (𝐺 sSet ⟨𝐼, 𝐸⟩) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))
84 isstruct2 16487 . . . 4 ((𝐺 sSet ⟨𝐼, 𝐸⟩) Struct ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ↔ (⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}) ∧ dom (𝐺 sSet ⟨𝐼, 𝐸⟩) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩)))
8543, 51, 83, 84syl3anbrc 1339 . . 3 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → (𝐺 sSet ⟨𝐼, 𝐸⟩) Struct ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩)
8685adantr 483 . 2 (((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) ∧ 𝑌 = ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩) → (𝐺 sSet ⟨𝐼, 𝐸⟩) Struct ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩)
87 breq2 5062 . . 3 (𝑌 = ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ → ((𝐺 sSet ⟨𝐼, 𝐸⟩) Struct 𝑌 ↔ (𝐺 sSet ⟨𝐼, 𝐸⟩) Struct ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))
8887adantl 484 . 2 (((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) ∧ 𝑌 = ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩) → ((𝐺 sSet ⟨𝐼, 𝐸⟩) Struct 𝑌 ↔ (𝐺 sSet ⟨𝐼, 𝐸⟩) Struct ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))
8986, 88mpbird 259 1 (((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) ∧ 𝑌 = ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩) → (𝐺 sSet ⟨𝐼, 𝐸⟩) Struct 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  Vcvv 3494  cdif 3932  cun 3933  cin 3934  wss 3935  c0 4290  ifcif 4466  {csn 4560  cop 4566   class class class wbr 5058   × cxp 5547  dom cdm 5549  Fun wfun 6343  cfv 6349  (class class class)co 7150  1st c1st 7681  2nd c2nd 7682  cr 10530  cle 10670  cn 11632  cz 11975  ...cfz 12886   Struct cstr 16473   sSet csts 16475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-struct 16479  df-sets 16484
This theorem is referenced by:  setsexstruct2  16516  setsstruct  16517
  Copyright terms: Public domain W3C validator