MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsxms Structured version   Visualization version   GIF version

Theorem setsxms 22477
Description: The constructed metric space is a metric space iff the provided distance function is a metric. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
setsms.x (𝜑𝑋 = (Base‘𝑀))
setsms.d (𝜑𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
setsms.k (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
setsms.m (𝜑𝑀𝑉)
Assertion
Ref Expression
setsxms (𝜑 → (𝐾 ∈ ∞MetSp ↔ 𝐷 ∈ (∞Met‘𝑋)))

Proof of Theorem setsxms
StepHypRef Expression
1 setsms.x . . . . 5 (𝜑𝑋 = (Base‘𝑀))
2 setsms.d . . . . 5 (𝜑𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
3 setsms.k . . . . 5 (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
4 setsms.m . . . . 5 (𝜑𝑀𝑉)
51, 2, 3, 4setsmstopn 22476 . . . 4 (𝜑 → (MetOpen‘𝐷) = (TopOpen‘𝐾))
61, 2, 3setsmsds 22474 . . . . . . 7 (𝜑 → (dist‘𝑀) = (dist‘𝐾))
71, 2, 3setsmsbas 22473 . . . . . . . 8 (𝜑𝑋 = (Base‘𝐾))
87sqxpeqd 5290 . . . . . . 7 (𝜑 → (𝑋 × 𝑋) = ((Base‘𝐾) × (Base‘𝐾)))
96, 8reseq12d 5544 . . . . . 6 (𝜑 → ((dist‘𝑀) ↾ (𝑋 × 𝑋)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
102, 9eqtrd 2786 . . . . 5 (𝜑𝐷 = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
1110fveq2d 6348 . . . 4 (𝜑 → (MetOpen‘𝐷) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))))
125, 11eqtr3d 2788 . . 3 (𝜑 → (TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))))
13 eqid 2752 . . . . 5 (TopOpen‘𝐾) = (TopOpen‘𝐾)
14 eqid 2752 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
15 eqid 2752 . . . . 5 ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))
1613, 14, 15isxms2 22446 . . . 4 (𝐾 ∈ ∞MetSp ↔ (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾)) ∧ (TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))))
1716rbaib 985 . . 3 ((TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) → (𝐾 ∈ ∞MetSp ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾))))
1812, 17syl 17 . 2 (𝜑 → (𝐾 ∈ ∞MetSp ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾))))
197fveq2d 6348 . . 3 (𝜑 → (∞Met‘𝑋) = (∞Met‘(Base‘𝐾)))
2010, 19eleq12d 2825 . 2 (𝜑 → (𝐷 ∈ (∞Met‘𝑋) ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾))))
2118, 20bitr4d 271 1 (𝜑 → (𝐾 ∈ ∞MetSp ↔ 𝐷 ∈ (∞Met‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1624  wcel 2131  cop 4319   × cxp 5256  cres 5260  cfv 6041  (class class class)co 6805  ndxcnx 16048   sSet csts 16049  Basecbs 16051  TopSetcts 16141  distcds 16144  TopOpenctopn 16276  ∞Metcxmt 19925  MetOpencmopn 19930  ∞MetSpcxme 22315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-er 7903  df-map 8017  df-en 8114  df-dom 8115  df-sdom 8116  df-sup 8505  df-inf 8506  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-5 11266  df-6 11267  df-7 11268  df-8 11269  df-9 11270  df-n0 11477  df-z 11562  df-dec 11678  df-uz 11872  df-q 11974  df-rp 12018  df-xneg 12131  df-xadd 12132  df-xmul 12133  df-ndx 16054  df-slot 16055  df-base 16057  df-sets 16058  df-tset 16154  df-ds 16158  df-rest 16277  df-topn 16278  df-topgen 16298  df-psmet 19932  df-xmet 19933  df-bl 19935  df-mopn 19936  df-top 20893  df-topon 20910  df-topsp 20931  df-bases 20944  df-xms 22318
This theorem is referenced by:  setsms  22478
  Copyright terms: Public domain W3C validator