Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0ad2en Structured version   Visualization version   GIF version

 Description: The value of the infinite geometric series 2↑-1 + 2↑-2 +... , multiplied by a constant. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypothesis
Ref Expression
Assertion
Ref Expression
sge0ad2en (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) = 𝐴)
Distinct variable groups:   𝐴,𝑛   𝜑,𝑛

StepHypRef Expression
1 nfv 1840 . 2 𝑛𝜑
2 0xr 10030 . . . 4 0 ∈ ℝ*
32a1i 11 . . 3 ((𝜑𝑛 ∈ ℕ) → 0 ∈ ℝ*)
4 pnfxr 10036 . . . 4 +∞ ∈ ℝ*
54a1i 11 . . 3 ((𝜑𝑛 ∈ ℕ) → +∞ ∈ ℝ*)
6 rge0ssre 12222 . . . . . . 7 (0[,)+∞) ⊆ ℝ
7 sge0ad2en.1 . . . . . . 7 (𝜑𝐴 ∈ (0[,)+∞))
86, 7sseldi 3581 . . . . . 6 (𝜑𝐴 ∈ ℝ)
98adantr 481 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
10 2re 11034 . . . . . . 7 2 ∈ ℝ
1110a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℝ)
12 nnnn0 11243 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
1312adantl 482 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
1411, 13reexpcld 12965 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ)
15 2cnd 11037 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℂ)
16 2ne0 11057 . . . . . . 7 2 ≠ 0
1716a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 2 ≠ 0)
1813nn0zd 11424 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
1915, 17, 18expne0d 12954 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ≠ 0)
209, 14, 19redivcld 10797 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐴 / (2↑𝑛)) ∈ ℝ)
2120rexrd 10033 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐴 / (2↑𝑛)) ∈ ℝ*)
22 2rp 11781 . . . . . 6 2 ∈ ℝ+
2322a1i 11 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℝ+)
2423, 18rpexpcld 12972 . . . 4 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ+)
252a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℝ*)
264a1i 11 . . . . . 6 (𝜑 → +∞ ∈ ℝ*)
27 icogelb 12167 . . . . . 6 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 ∈ (0[,)+∞)) → 0 ≤ 𝐴)
2825, 26, 7, 27syl3anc 1323 . . . . 5 (𝜑 → 0 ≤ 𝐴)
2928adantr 481 . . . 4 ((𝜑𝑛 ∈ ℕ) → 0 ≤ 𝐴)
309, 24, 29divge0d 11856 . . 3 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (𝐴 / (2↑𝑛)))
3120ltpnfd 11899 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐴 / (2↑𝑛)) < +∞)
323, 5, 21, 30, 31elicod 12166 . 2 ((𝜑𝑛 ∈ ℕ) → (𝐴 / (2↑𝑛)) ∈ (0[,)+∞))
33 1zzd 11352 . 2 (𝜑 → 1 ∈ ℤ)
34 nnuz 11667 . 2 ℕ = (ℤ‘1)
358recnd 10012 . . 3 (𝜑𝐴 ∈ ℂ)
36 eqid 2621 . . . 4 (𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛))) = (𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))
3736geo2lim 14531 . . 3 (𝐴 ∈ ℂ → seq1( + , (𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) ⇝ 𝐴)
3835, 37syl 17 . 2 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) ⇝ 𝐴)
391, 32, 33, 34, 38sge0isummpt 39951 1 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) = 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790   class class class wbr 4613   ↦ cmpt 4673  ‘cfv 5847  (class class class)co 6604  ℂcc 9878  ℝcr 9879  0cc0 9880  1c1 9881   + caddc 9883  +∞cpnf 10015  ℝ*cxr 10017   ≤ cle 10019   / cdiv 10628  ℕcn 10964  2c2 11014  ℕ0cn0 11236  ℝ+crp 11776  [,)cico 12119  seqcseq 12741  ↑cexp 12800   ⇝ cli 14149  Σ^csumge0 39883 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-rlim 14154  df-sum 14351  df-sumge0 39884 This theorem is referenced by:  ovnsubaddlem1  40088  ovolval5lem1  40170
 Copyright terms: Public domain W3C validator