Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0f1o Structured version   Visualization version   GIF version

Theorem sge0f1o 39927
Description: Re-index a nonnegative extended sum using a bijection. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0f1o.1 𝑘𝜑
sge0f1o.2 𝑛𝜑
sge0f1o.3 (𝑘 = 𝐺𝐵 = 𝐷)
sge0f1o.4 (𝜑𝐶𝑉)
sge0f1o.5 (𝜑𝐹:𝐶1-1-onto𝐴)
sge0f1o.6 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
sge0f1o.7 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
Assertion
Ref Expression
sge0f1o (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = (Σ^‘(𝑛𝐶𝐷)))
Distinct variable groups:   𝐴,𝑘,𝑛   𝐵,𝑛   𝐶,𝑘,𝑛   𝐷,𝑘   𝑘,𝐹,𝑛   𝑘,𝐺
Allowed substitution hints:   𝜑(𝑘,𝑛)   𝐵(𝑘)   𝐷(𝑛)   𝐺(𝑛)   𝑉(𝑘,𝑛)

Proof of Theorem sge0f1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0f1o.4 . . . . . 6 (𝜑𝐶𝑉)
2 sge0f1o.5 . . . . . . 7 (𝜑𝐹:𝐶1-1-onto𝐴)
3 f1ofo 6106 . . . . . . 7 (𝐹:𝐶1-1-onto𝐴𝐹:𝐶onto𝐴)
42, 3syl 17 . . . . . 6 (𝜑𝐹:𝐶onto𝐴)
5 fornex 7089 . . . . . 6 (𝐶𝑉 → (𝐹:𝐶onto𝐴𝐴 ∈ V))
61, 4, 5sylc 65 . . . . 5 (𝜑𝐴 ∈ V)
76adantr 481 . . . 4 ((𝜑 ∧ +∞ ∈ ran (𝑛𝐶𝐷)) → 𝐴 ∈ V)
8 sge0f1o.1 . . . . . 6 𝑘𝜑
9 sge0f1o.7 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
10 eqid 2621 . . . . . 6 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
118, 9, 10fmptdf 6348 . . . . 5 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
1211adantr 481 . . . 4 ((𝜑 ∧ +∞ ∈ ran (𝑛𝐶𝐷)) → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
13 pnfex 10044 . . . . . . . 8 +∞ ∈ V
14 eqid 2621 . . . . . . . . 9 (𝑛𝐶𝐷) = (𝑛𝐶𝐷)
1514elrnmpt 5337 . . . . . . . 8 (+∞ ∈ V → (+∞ ∈ ran (𝑛𝐶𝐷) ↔ ∃𝑛𝐶 +∞ = 𝐷))
1613, 15ax-mp 5 . . . . . . 7 (+∞ ∈ ran (𝑛𝐶𝐷) ↔ ∃𝑛𝐶 +∞ = 𝐷)
1716biimpi 206 . . . . . 6 (+∞ ∈ ran (𝑛𝐶𝐷) → ∃𝑛𝐶 +∞ = 𝐷)
1817adantl 482 . . . . 5 ((𝜑 ∧ +∞ ∈ ran (𝑛𝐶𝐷)) → ∃𝑛𝐶 +∞ = 𝐷)
19 sge0f1o.2 . . . . . . 7 𝑛𝜑
20 nfv 1840 . . . . . . 7 𝑛+∞ ∈ ran (𝑘𝐴𝐵)
21 simp3 1061 . . . . . . . . . 10 ((𝜑𝑛𝐶 ∧ +∞ = 𝐷) → +∞ = 𝐷)
22 f1of 6099 . . . . . . . . . . . . . . 15 (𝐹:𝐶1-1-onto𝐴𝐹:𝐶𝐴)
232, 22syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹:𝐶𝐴)
2423ffvelrnda 6320 . . . . . . . . . . . . 13 ((𝜑𝑛𝐶) → (𝐹𝑛) ∈ 𝐴)
25 sge0f1o.6 . . . . . . . . . . . . 13 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
26 nfcv 2761 . . . . . . . . . . . . . 14 𝑘(𝐹𝑛)
27 nfv 1840 . . . . . . . . . . . . . . 15 𝑘(𝐹𝑛) = 𝐺
2826nfcsb1 3533 . . . . . . . . . . . . . . . 16 𝑘(𝐹𝑛) / 𝑘𝐵
29 nfcv 2761 . . . . . . . . . . . . . . . 16 𝑘𝐷
3028, 29nfeq 2772 . . . . . . . . . . . . . . 15 𝑘(𝐹𝑛) / 𝑘𝐵 = 𝐷
3127, 30nfim 1822 . . . . . . . . . . . . . 14 𝑘((𝐹𝑛) = 𝐺(𝐹𝑛) / 𝑘𝐵 = 𝐷)
32 eqeq1 2625 . . . . . . . . . . . . . . 15 (𝑘 = (𝐹𝑛) → (𝑘 = 𝐺 ↔ (𝐹𝑛) = 𝐺))
33 csbeq1a 3527 . . . . . . . . . . . . . . . 16 (𝑘 = (𝐹𝑛) → 𝐵 = (𝐹𝑛) / 𝑘𝐵)
3433eqeq1d 2623 . . . . . . . . . . . . . . 15 (𝑘 = (𝐹𝑛) → (𝐵 = 𝐷(𝐹𝑛) / 𝑘𝐵 = 𝐷))
3532, 34imbi12d 334 . . . . . . . . . . . . . 14 (𝑘 = (𝐹𝑛) → ((𝑘 = 𝐺𝐵 = 𝐷) ↔ ((𝐹𝑛) = 𝐺(𝐹𝑛) / 𝑘𝐵 = 𝐷)))
36 sge0f1o.3 . . . . . . . . . . . . . 14 (𝑘 = 𝐺𝐵 = 𝐷)
3726, 31, 35, 36vtoclgf 3253 . . . . . . . . . . . . 13 ((𝐹𝑛) ∈ 𝐴 → ((𝐹𝑛) = 𝐺(𝐹𝑛) / 𝑘𝐵 = 𝐷))
3824, 25, 37sylc 65 . . . . . . . . . . . 12 ((𝜑𝑛𝐶) → (𝐹𝑛) / 𝑘𝐵 = 𝐷)
3938eqcomd 2627 . . . . . . . . . . 11 ((𝜑𝑛𝐶) → 𝐷 = (𝐹𝑛) / 𝑘𝐵)
40393adant3 1079 . . . . . . . . . 10 ((𝜑𝑛𝐶 ∧ +∞ = 𝐷) → 𝐷 = (𝐹𝑛) / 𝑘𝐵)
4121, 40eqtrd 2655 . . . . . . . . 9 ((𝜑𝑛𝐶 ∧ +∞ = 𝐷) → +∞ = (𝐹𝑛) / 𝑘𝐵)
42 simpl 473 . . . . . . . . . . . . 13 ((𝜑𝑛𝐶) → 𝜑)
4342, 24jca 554 . . . . . . . . . . . 12 ((𝜑𝑛𝐶) → (𝜑 ∧ (𝐹𝑛) ∈ 𝐴))
44 nfv 1840 . . . . . . . . . . . . . . 15 𝑘(𝐹𝑛) ∈ 𝐴
458, 44nfan 1825 . . . . . . . . . . . . . 14 𝑘(𝜑 ∧ (𝐹𝑛) ∈ 𝐴)
4628nfel1 2775 . . . . . . . . . . . . . 14 𝑘(𝐹𝑛) / 𝑘𝐵 ∈ (0[,]+∞)
4745, 46nfim 1822 . . . . . . . . . . . . 13 𝑘((𝜑 ∧ (𝐹𝑛) ∈ 𝐴) → (𝐹𝑛) / 𝑘𝐵 ∈ (0[,]+∞))
48 eleq1 2686 . . . . . . . . . . . . . . 15 (𝑘 = (𝐹𝑛) → (𝑘𝐴 ↔ (𝐹𝑛) ∈ 𝐴))
4948anbi2d 739 . . . . . . . . . . . . . 14 (𝑘 = (𝐹𝑛) → ((𝜑𝑘𝐴) ↔ (𝜑 ∧ (𝐹𝑛) ∈ 𝐴)))
5033eleq1d 2683 . . . . . . . . . . . . . 14 (𝑘 = (𝐹𝑛) → (𝐵 ∈ (0[,]+∞) ↔ (𝐹𝑛) / 𝑘𝐵 ∈ (0[,]+∞)))
5149, 50imbi12d 334 . . . . . . . . . . . . 13 (𝑘 = (𝐹𝑛) → (((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞)) ↔ ((𝜑 ∧ (𝐹𝑛) ∈ 𝐴) → (𝐹𝑛) / 𝑘𝐵 ∈ (0[,]+∞))))
5226, 47, 51, 9vtoclgf 3253 . . . . . . . . . . . 12 ((𝐹𝑛) ∈ 𝐴 → ((𝜑 ∧ (𝐹𝑛) ∈ 𝐴) → (𝐹𝑛) / 𝑘𝐵 ∈ (0[,]+∞)))
5324, 43, 52sylc 65 . . . . . . . . . . 11 ((𝜑𝑛𝐶) → (𝐹𝑛) / 𝑘𝐵 ∈ (0[,]+∞))
5428, 10, 33elrnmpt1sf 38873 . . . . . . . . . . 11 (((𝐹𝑛) ∈ 𝐴(𝐹𝑛) / 𝑘𝐵 ∈ (0[,]+∞)) → (𝐹𝑛) / 𝑘𝐵 ∈ ran (𝑘𝐴𝐵))
5524, 53, 54syl2anc 692 . . . . . . . . . 10 ((𝜑𝑛𝐶) → (𝐹𝑛) / 𝑘𝐵 ∈ ran (𝑘𝐴𝐵))
56553adant3 1079 . . . . . . . . 9 ((𝜑𝑛𝐶 ∧ +∞ = 𝐷) → (𝐹𝑛) / 𝑘𝐵 ∈ ran (𝑘𝐴𝐵))
5741, 56eqeltrd 2698 . . . . . . . 8 ((𝜑𝑛𝐶 ∧ +∞ = 𝐷) → +∞ ∈ ran (𝑘𝐴𝐵))
58573exp 1261 . . . . . . 7 (𝜑 → (𝑛𝐶 → (+∞ = 𝐷 → +∞ ∈ ran (𝑘𝐴𝐵))))
5919, 20, 58rexlimd 3020 . . . . . 6 (𝜑 → (∃𝑛𝐶 +∞ = 𝐷 → +∞ ∈ ran (𝑘𝐴𝐵)))
6059adantr 481 . . . . 5 ((𝜑 ∧ +∞ ∈ ran (𝑛𝐶𝐷)) → (∃𝑛𝐶 +∞ = 𝐷 → +∞ ∈ ran (𝑘𝐴𝐵)))
6118, 60mpd 15 . . . 4 ((𝜑 ∧ +∞ ∈ ran (𝑛𝐶𝐷)) → +∞ ∈ ran (𝑘𝐴𝐵))
627, 12, 61sge0pnfval 39918 . . 3 ((𝜑 ∧ +∞ ∈ ran (𝑛𝐶𝐷)) → (Σ^‘(𝑘𝐴𝐵)) = +∞)
631adantr 481 . . . 4 ((𝜑 ∧ +∞ ∈ ran (𝑛𝐶𝐷)) → 𝐶𝑉)
6439, 53eqeltrd 2698 . . . . . 6 ((𝜑𝑛𝐶) → 𝐷 ∈ (0[,]+∞))
6519, 64, 14fmptdf 6348 . . . . 5 (𝜑 → (𝑛𝐶𝐷):𝐶⟶(0[,]+∞))
6665adantr 481 . . . 4 ((𝜑 ∧ +∞ ∈ ran (𝑛𝐶𝐷)) → (𝑛𝐶𝐷):𝐶⟶(0[,]+∞))
67 simpr 477 . . . 4 ((𝜑 ∧ +∞ ∈ ran (𝑛𝐶𝐷)) → +∞ ∈ ran (𝑛𝐶𝐷))
6863, 66, 67sge0pnfval 39918 . . 3 ((𝜑 ∧ +∞ ∈ ran (𝑛𝐶𝐷)) → (Σ^‘(𝑛𝐶𝐷)) = +∞)
6962, 68eqtr4d 2658 . 2 ((𝜑 ∧ +∞ ∈ ran (𝑛𝐶𝐷)) → (Σ^‘(𝑘𝐴𝐵)) = (Σ^‘(𝑛𝐶𝐷)))
70 sumex 14359 . . . . . . 7 Σ𝑘𝑦 𝐵 ∈ V
7170a1i 11 . . . . . 6 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 𝐵 ∈ V)
72 cnvimass 5449 . . . . . . . . . . . . 13 (𝐹𝑦) ⊆ dom 𝐹
7372a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐹𝑦) ⊆ dom 𝐹)
74 fdm 6013 . . . . . . . . . . . . 13 (𝐹:𝐶𝐴 → dom 𝐹 = 𝐶)
7523, 74syl 17 . . . . . . . . . . . 12 (𝜑 → dom 𝐹 = 𝐶)
7673, 75sseqtrd 3625 . . . . . . . . . . 11 (𝜑 → (𝐹𝑦) ⊆ 𝐶)
77 fex 6450 . . . . . . . . . . . . . . 15 ((𝐹:𝐶𝐴𝐶𝑉) → 𝐹 ∈ V)
7823, 1, 77syl2anc 692 . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ V)
79 cnvexg 7066 . . . . . . . . . . . . . 14 (𝐹 ∈ V → 𝐹 ∈ V)
8078, 79syl 17 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ V)
81 imaexg 7057 . . . . . . . . . . . . 13 (𝐹 ∈ V → (𝐹𝑦) ∈ V)
8280, 81syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐹𝑦) ∈ V)
83 elpwg 4143 . . . . . . . . . . . 12 ((𝐹𝑦) ∈ V → ((𝐹𝑦) ∈ 𝒫 𝐶 ↔ (𝐹𝑦) ⊆ 𝐶))
8482, 83syl 17 . . . . . . . . . . 11 (𝜑 → ((𝐹𝑦) ∈ 𝒫 𝐶 ↔ (𝐹𝑦) ⊆ 𝐶))
8576, 84mpbird 247 . . . . . . . . . 10 (𝜑 → (𝐹𝑦) ∈ 𝒫 𝐶)
8685adantr 481 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑦) ∈ 𝒫 𝐶)
87 f1ocnv 6111 . . . . . . . . . . . . 13 (𝐹:𝐶1-1-onto𝐴𝐹:𝐴1-1-onto𝐶)
882, 87syl 17 . . . . . . . . . . . 12 (𝜑𝐹:𝐴1-1-onto𝐶)
89 f1ofun 6101 . . . . . . . . . . . 12 (𝐹:𝐴1-1-onto𝐶 → Fun 𝐹)
9088, 89syl 17 . . . . . . . . . . 11 (𝜑 → Fun 𝐹)
9190adantr 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Fun 𝐹)
92 elinel2 3783 . . . . . . . . . . 11 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
9392adantl 482 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
94 imafi 8210 . . . . . . . . . 10 ((Fun 𝐹𝑦 ∈ Fin) → (𝐹𝑦) ∈ Fin)
9591, 93, 94syl2anc 692 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑦) ∈ Fin)
9686, 95elind 3781 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin))
9796adantlr 750 . . . . . . 7 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin))
98 nfv 1840 . . . . . . . . . 10 𝑘 ¬ +∞ ∈ ran (𝑛𝐶𝐷)
998, 98nfan 1825 . . . . . . . . 9 𝑘(𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷))
100 nfv 1840 . . . . . . . . 9 𝑘 𝑦 ∈ (𝒫 𝐴 ∩ Fin)
10199, 100nfan 1825 . . . . . . . 8 𝑘((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
102 nfcv 2761 . . . . . . . . . . . 12 𝑛+∞
103 nfmpt1 4712 . . . . . . . . . . . . 13 𝑛(𝑛𝐶𝐷)
104103nfrn 5333 . . . . . . . . . . . 12 𝑛ran (𝑛𝐶𝐷)
105102, 104nfel 2773 . . . . . . . . . . 11 𝑛+∞ ∈ ran (𝑛𝐶𝐷)
106105nfn 1781 . . . . . . . . . 10 𝑛 ¬ +∞ ∈ ran (𝑛𝐶𝐷)
10719, 106nfan 1825 . . . . . . . . 9 𝑛(𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷))
108 nfv 1840 . . . . . . . . 9 𝑛 𝑦 ∈ (𝒫 𝐴 ∩ Fin)
109107, 108nfan 1825 . . . . . . . 8 𝑛((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
11095adantlr 750 . . . . . . . 8 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑦) ∈ Fin)
111 f1of1 6098 . . . . . . . . . . . . 13 (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1𝐴)
1122, 111syl 17 . . . . . . . . . . . 12 (𝜑𝐹:𝐶1-1𝐴)
113112adantr 481 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹:𝐶1-1𝐴)
11484adantr 481 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹𝑦) ∈ 𝒫 𝐶 ↔ (𝐹𝑦) ⊆ 𝐶))
11586, 114mpbid 222 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑦) ⊆ 𝐶)
116 f1ores 6113 . . . . . . . . . . 11 ((𝐹:𝐶1-1𝐴 ∧ (𝐹𝑦) ⊆ 𝐶) → (𝐹 ↾ (𝐹𝑦)):(𝐹𝑦)–1-1-onto→(𝐹 “ (𝐹𝑦)))
117113, 115, 116syl2anc 692 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 ↾ (𝐹𝑦)):(𝐹𝑦)–1-1-onto→(𝐹 “ (𝐹𝑦)))
1184adantr 481 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹:𝐶onto𝐴)
119 elpwinss 38726 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
120119adantl 482 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦𝐴)
121 foimacnv 6116 . . . . . . . . . . . 12 ((𝐹:𝐶onto𝐴𝑦𝐴) → (𝐹 “ (𝐹𝑦)) = 𝑦)
122118, 120, 121syl2anc 692 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 “ (𝐹𝑦)) = 𝑦)
123122f1oeq3d 6096 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹 ↾ (𝐹𝑦)):(𝐹𝑦)–1-1-onto→(𝐹 “ (𝐹𝑦)) ↔ (𝐹 ↾ (𝐹𝑦)):(𝐹𝑦)–1-1-onto𝑦))
124117, 123mpbid 222 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 ↾ (𝐹𝑦)):(𝐹𝑦)–1-1-onto𝑦)
125124adantlr 750 . . . . . . . 8 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 ↾ (𝐹𝑦)):(𝐹𝑦)–1-1-onto𝑦)
12682ad2antrr 761 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑛 ∈ (𝐹𝑦)) → (𝐹𝑦) ∈ V)
127 simpll 789 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑛 ∈ (𝐹𝑦)) → 𝜑)
12896adantr 481 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑛 ∈ (𝐹𝑦)) → (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin))
129 simpr 477 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑛 ∈ (𝐹𝑦)) → 𝑛 ∈ (𝐹𝑦))
130127, 128, 129jca31 556 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑛 ∈ (𝐹𝑦)) → ((𝜑 ∧ (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛 ∈ (𝐹𝑦)))
131 eleq1 2686 . . . . . . . . . . . . . 14 (𝑥 = (𝐹𝑦) → (𝑥 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin)))
132131anbi2d 739 . . . . . . . . . . . . 13 (𝑥 = (𝐹𝑦) → ((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ↔ (𝜑 ∧ (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin))))
133 eleq2 2687 . . . . . . . . . . . . 13 (𝑥 = (𝐹𝑦) → (𝑛𝑥𝑛 ∈ (𝐹𝑦)))
134132, 133anbi12d 746 . . . . . . . . . . . 12 (𝑥 = (𝐹𝑦) → (((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛𝑥) ↔ ((𝜑 ∧ (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛 ∈ (𝐹𝑦))))
135 reseq2 5356 . . . . . . . . . . . . . 14 (𝑥 = (𝐹𝑦) → (𝐹𝑥) = (𝐹 ↾ (𝐹𝑦)))
136135fveq1d 6155 . . . . . . . . . . . . 13 (𝑥 = (𝐹𝑦) → ((𝐹𝑥)‘𝑛) = ((𝐹 ↾ (𝐹𝑦))‘𝑛))
137136eqeq1d 2623 . . . . . . . . . . . 12 (𝑥 = (𝐹𝑦) → (((𝐹𝑥)‘𝑛) = 𝐺 ↔ ((𝐹 ↾ (𝐹𝑦))‘𝑛) = 𝐺))
138134, 137imbi12d 334 . . . . . . . . . . 11 (𝑥 = (𝐹𝑦) → ((((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛𝑥) → ((𝐹𝑥)‘𝑛) = 𝐺) ↔ (((𝜑 ∧ (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛 ∈ (𝐹𝑦)) → ((𝐹 ↾ (𝐹𝑦))‘𝑛) = 𝐺)))
139 fvres 6169 . . . . . . . . . . . . 13 (𝑛𝑥 → ((𝐹𝑥)‘𝑛) = (𝐹𝑛))
140139adantl 482 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛𝑥) → ((𝐹𝑥)‘𝑛) = (𝐹𝑛))
141 simpll 789 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛𝑥) → 𝜑)
142 elpwinss 38726 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝒫 𝐶 ∩ Fin) → 𝑥𝐶)
143142adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑥𝐶)
144143sselda 3587 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛𝑥) → 𝑛𝐶)
145141, 144, 25syl2anc 692 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛𝑥) → (𝐹𝑛) = 𝐺)
146140, 145eqtrd 2655 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛𝑥) → ((𝐹𝑥)‘𝑛) = 𝐺)
147138, 146vtoclg 3255 . . . . . . . . . 10 ((𝐹𝑦) ∈ V → (((𝜑 ∧ (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛 ∈ (𝐹𝑦)) → ((𝐹 ↾ (𝐹𝑦))‘𝑛) = 𝐺))
148126, 130, 147sylc 65 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑛 ∈ (𝐹𝑦)) → ((𝐹 ↾ (𝐹𝑦))‘𝑛) = 𝐺)
149148adantllr 754 . . . . . . . 8 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑛 ∈ (𝐹𝑦)) → ((𝐹 ↾ (𝐹𝑦))‘𝑛) = 𝐺)
15082ad3antrrr 765 . . . . . . . . 9 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → (𝐹𝑦) ∈ V)
151 simpll 789 . . . . . . . . . 10 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → (𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)))
15285ad3antrrr 765 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → (𝐹𝑦) ∈ 𝒫 𝐶)
153110adantr 481 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → (𝐹𝑦) ∈ Fin)
154152, 153elind 3781 . . . . . . . . . 10 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin))
155 simpr 477 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝑘𝑦)
156122eqcomd 2627 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 = (𝐹 “ (𝐹𝑦)))
157156adantr 481 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝑦 = (𝐹 “ (𝐹𝑦)))
158155, 157eleqtrd 2700 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝑘 ∈ (𝐹 “ (𝐹𝑦)))
159158adantllr 754 . . . . . . . . . 10 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝑘 ∈ (𝐹 “ (𝐹𝑦)))
160151, 154, 159jca31 556 . . . . . . . . 9 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ (𝐹𝑦))))
161131anbi2d 739 . . . . . . . . . . . 12 (𝑥 = (𝐹𝑦) → (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ↔ ((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin))))
162 imaeq2 5426 . . . . . . . . . . . . 13 (𝑥 = (𝐹𝑦) → (𝐹𝑥) = (𝐹 “ (𝐹𝑦)))
163162eleq2d 2684 . . . . . . . . . . . 12 (𝑥 = (𝐹𝑦) → (𝑘 ∈ (𝐹𝑥) ↔ 𝑘 ∈ (𝐹 “ (𝐹𝑦))))
164161, 163anbi12d 746 . . . . . . . . . . 11 (𝑥 = (𝐹𝑦) → ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹𝑥)) ↔ (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ (𝐹𝑦)))))
165164imbi1d 331 . . . . . . . . . 10 (𝑥 = (𝐹𝑦) → (((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹𝑥)) → 𝐵 ∈ ℂ) ↔ ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ (𝐹𝑦))) → 𝐵 ∈ ℂ)))
166 rge0ssre 12229 . . . . . . . . . . . . 13 (0[,)+∞) ⊆ ℝ
167 ax-resscn 9944 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
168166, 167sstri 3596 . . . . . . . . . . . 12 (0[,)+∞) ⊆ ℂ
169 simplll 797 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹𝑥)) → 𝜑)
170 simpllr 798 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹𝑥)) → ¬ +∞ ∈ ran (𝑛𝐶𝐷))
171 fimass 6043 . . . . . . . . . . . . . . . . 17 (𝐹:𝐶𝐴 → (𝐹𝑥) ⊆ 𝐴)
17223, 171syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹𝑥) ⊆ 𝐴)
173172ad2antrr 761 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹𝑥)) → (𝐹𝑥) ⊆ 𝐴)
174 simpr 477 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹𝑥)) → 𝑘 ∈ (𝐹𝑥))
175173, 174sseldd 3588 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹𝑥)) → 𝑘𝐴)
176175adantllr 754 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹𝑥)) → 𝑘𝐴)
177 foelrni 6206 . . . . . . . . . . . . . . . 16 ((𝐹:𝐶onto𝐴𝑘𝐴) → ∃𝑛𝐶 (𝐹𝑛) = 𝑘)
1784, 177sylan 488 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → ∃𝑛𝐶 (𝐹𝑛) = 𝑘)
179178adantlr 750 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑘𝐴) → ∃𝑛𝐶 (𝐹𝑛) = 𝑘)
180 nfv 1840 . . . . . . . . . . . . . . . 16 𝑛 𝑘𝐴
181107, 180nfan 1825 . . . . . . . . . . . . . . 15 𝑛((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑘𝐴)
182 nfv 1840 . . . . . . . . . . . . . . 15 𝑛 𝐵 ∈ (0[,)+∞)
183 csbid 3526 . . . . . . . . . . . . . . . . . . . . . 22 𝑘 / 𝑘𝐵 = 𝐵
184183eqcomi 2630 . . . . . . . . . . . . . . . . . . . . 21 𝐵 = 𝑘 / 𝑘𝐵
185184a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛𝐶 ∧ (𝐹𝑛) = 𝑘) → 𝐵 = 𝑘 / 𝑘𝐵)
186 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹𝑛) = 𝑘 → (𝐹𝑛) = 𝑘)
187186eqcomd 2627 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝑛) = 𝑘𝑘 = (𝐹𝑛))
188187csbeq1d 3525 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑛) = 𝑘𝑘 / 𝑘𝐵 = (𝐹𝑛) / 𝑘𝐵)
1891883ad2ant3 1082 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛𝐶 ∧ (𝐹𝑛) = 𝑘) → 𝑘 / 𝑘𝐵 = (𝐹𝑛) / 𝑘𝐵)
19038idi 2 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛𝐶) → (𝐹𝑛) / 𝑘𝐵 = 𝐷)
1911903adant3 1079 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛𝐶 ∧ (𝐹𝑛) = 𝑘) → (𝐹𝑛) / 𝑘𝐵 = 𝐷)
192185, 189, 1913eqtrd 2659 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛𝐶 ∧ (𝐹𝑛) = 𝑘) → 𝐵 = 𝐷)
1931923adant1r 1316 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑛𝐶 ∧ (𝐹𝑛) = 𝑘) → 𝐵 = 𝐷)
194 0xr 10037 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ ℝ*
195194a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → 0 ∈ ℝ*)
196 pnfxr 10043 . . . . . . . . . . . . . . . . . . . . . . . . 25 +∞ ∈ ℝ*
197196a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → +∞ ∈ ℝ*)
19864adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → 𝐷 ∈ (0[,]+∞))
199 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → ¬ 𝐷 ∈ (0[,)+∞))
200195, 197, 198, 199eliccnelico 39190 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → 𝐷 = +∞)
201200eqcomd 2627 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → +∞ = 𝐷)
202 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛𝐶) → 𝑛𝐶)
20364idi 2 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛𝐶) → 𝐷 ∈ (0[,]+∞))
20414elrnmpt1 5339 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛𝐶𝐷 ∈ (0[,]+∞)) → 𝐷 ∈ ran (𝑛𝐶𝐷))
205202, 203, 204syl2anc 692 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛𝐶) → 𝐷 ∈ ran (𝑛𝐶𝐷))
206205adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → 𝐷 ∈ ran (𝑛𝐶𝐷))
207201, 206eqeltrd 2698 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → +∞ ∈ ran (𝑛𝐶𝐷))
208207adantllr 754 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑛𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → +∞ ∈ ran (𝑛𝐶𝐷))
209 simpllr 798 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑛𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → ¬ +∞ ∈ ran (𝑛𝐶𝐷))
210208, 209condan 834 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑛𝐶) → 𝐷 ∈ (0[,)+∞))
2112103adant3 1079 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑛𝐶 ∧ (𝐹𝑛) = 𝑘) → 𝐷 ∈ (0[,)+∞))
212193, 211eqeltrd 2698 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑛𝐶 ∧ (𝐹𝑛) = 𝑘) → 𝐵 ∈ (0[,)+∞))
2132123exp 1261 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) → (𝑛𝐶 → ((𝐹𝑛) = 𝑘𝐵 ∈ (0[,)+∞))))
214213adantr 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑘𝐴) → (𝑛𝐶 → ((𝐹𝑛) = 𝑘𝐵 ∈ (0[,)+∞))))
215181, 182, 214rexlimd 3020 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑘𝐴) → (∃𝑛𝐶 (𝐹𝑛) = 𝑘𝐵 ∈ (0[,)+∞)))
216179, 215mpd 15 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
217169, 170, 176, 216syl21anc 1322 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹𝑥)) → 𝐵 ∈ (0[,)+∞))
218168, 217sseldi 3585 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹𝑥)) → 𝐵 ∈ ℂ)
219218idi 2 . . . . . . . . . 10 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹𝑥)) → 𝐵 ∈ ℂ)
220165, 219vtoclg 3255 . . . . . . . . 9 ((𝐹𝑦) ∈ V → ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ (𝐹𝑦))) → 𝐵 ∈ ℂ))
221150, 160, 220sylc 65 . . . . . . . 8 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
222101, 109, 36, 110, 125, 149, 221fsumf1of 39233 . . . . . . 7 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 𝐵 = Σ𝑛 ∈ (𝐹𝑦)𝐷)
223 sumeq1 14360 . . . . . . . . 9 (𝑥 = (𝐹𝑦) → Σ𝑛𝑥 𝐷 = Σ𝑛 ∈ (𝐹𝑦)𝐷)
224223eqeq2d 2631 . . . . . . . 8 (𝑥 = (𝐹𝑦) → (Σ𝑘𝑦 𝐵 = Σ𝑛𝑥 𝐷 ↔ Σ𝑘𝑦 𝐵 = Σ𝑛 ∈ (𝐹𝑦)𝐷))
225224rspcev 3298 . . . . . . 7 (((𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin) ∧ Σ𝑘𝑦 𝐵 = Σ𝑛 ∈ (𝐹𝑦)𝐷) → ∃𝑥 ∈ (𝒫 𝐶 ∩ Fin)Σ𝑘𝑦 𝐵 = Σ𝑛𝑥 𝐷)
22697, 222, 225syl2anc 692 . . . . . 6 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ∃𝑥 ∈ (𝒫 𝐶 ∩ Fin)Σ𝑘𝑦 𝐵 = Σ𝑛𝑥 𝐷)
22771, 226rnmptssrn 38865 . . . . 5 ((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵) ⊆ ran (𝑥 ∈ (𝒫 𝐶 ∩ Fin) ↦ Σ𝑛𝑥 𝐷))
228 sumex 14359 . . . . . . 7 Σ𝑛𝑥 𝐷 ∈ V
229228a1i 11 . . . . . 6 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → Σ𝑛𝑥 𝐷 ∈ V)
2306, 172ssexd 4770 . . . . . . . . . . . 12 (𝜑 → (𝐹𝑥) ∈ V)
231 elpwg 4143 . . . . . . . . . . . 12 ((𝐹𝑥) ∈ V → ((𝐹𝑥) ∈ 𝒫 𝐴 ↔ (𝐹𝑥) ⊆ 𝐴))
232230, 231syl 17 . . . . . . . . . . 11 (𝜑 → ((𝐹𝑥) ∈ 𝒫 𝐴 ↔ (𝐹𝑥) ⊆ 𝐴))
233172, 232mpbird 247 . . . . . . . . . 10 (𝜑 → (𝐹𝑥) ∈ 𝒫 𝐴)
234233adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹𝑥) ∈ 𝒫 𝐴)
235 ffun 6010 . . . . . . . . . . . 12 (𝐹:𝐶𝐴 → Fun 𝐹)
23623, 235syl 17 . . . . . . . . . . 11 (𝜑 → Fun 𝐹)
237236adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → Fun 𝐹)
238 elinel2 3783 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 𝐶 ∩ Fin) → 𝑥 ∈ Fin)
239238adantl 482 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑥 ∈ Fin)
240 imafi 8210 . . . . . . . . . 10 ((Fun 𝐹𝑥 ∈ Fin) → (𝐹𝑥) ∈ Fin)
241237, 239, 240syl2anc 692 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹𝑥) ∈ Fin)
242234, 241elind 3781 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹𝑥) ∈ (𝒫 𝐴 ∩ Fin))
243242adantlr 750 . . . . . . 7 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹𝑥) ∈ (𝒫 𝐴 ∩ Fin))
244 nfv 1840 . . . . . . . . . 10 𝑘 𝑥 ∈ (𝒫 𝐶 ∩ Fin)
24599, 244nfan 1825 . . . . . . . . 9 𝑘((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin))
246 nfv 1840 . . . . . . . . . 10 𝑛 𝑥 ∈ (𝒫 𝐶 ∩ Fin)
247107, 246nfan 1825 . . . . . . . . 9 𝑛((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin))
248238adantl 482 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑥 ∈ Fin)
249112adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → 𝐹:𝐶1-1𝐴)
250 f1ores 6113 . . . . . . . . . . 11 ((𝐹:𝐶1-1𝐴𝑥𝐶) → (𝐹𝑥):𝑥1-1-onto→(𝐹𝑥))
251249, 143, 250syl2anc 692 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹𝑥):𝑥1-1-onto→(𝐹𝑥))
252251adantlr 750 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹𝑥):𝑥1-1-onto→(𝐹𝑥))
253146adantllr 754 . . . . . . . . 9 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛𝑥) → ((𝐹𝑥)‘𝑛) = 𝐺)
254245, 247, 36, 248, 252, 253, 218fsumf1of 39233 . . . . . . . 8 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → Σ𝑘 ∈ (𝐹𝑥)𝐵 = Σ𝑛𝑥 𝐷)
255254eqcomd 2627 . . . . . . 7 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → Σ𝑛𝑥 𝐷 = Σ𝑘 ∈ (𝐹𝑥)𝐵)
256 sumeq1 14360 . . . . . . . . 9 (𝑦 = (𝐹𝑥) → Σ𝑘𝑦 𝐵 = Σ𝑘 ∈ (𝐹𝑥)𝐵)
257256eqeq2d 2631 . . . . . . . 8 (𝑦 = (𝐹𝑥) → (Σ𝑛𝑥 𝐷 = Σ𝑘𝑦 𝐵 ↔ Σ𝑛𝑥 𝐷 = Σ𝑘 ∈ (𝐹𝑥)𝐵))
258257rspcev 3298 . . . . . . 7 (((𝐹𝑥) ∈ (𝒫 𝐴 ∩ Fin) ∧ Σ𝑛𝑥 𝐷 = Σ𝑘 ∈ (𝐹𝑥)𝐵) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑛𝑥 𝐷 = Σ𝑘𝑦 𝐵)
259243, 255, 258syl2anc 692 . . . . . 6 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑛𝑥 𝐷 = Σ𝑘𝑦 𝐵)
260229, 259rnmptssrn 38865 . . . . 5 ((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) → ran (𝑥 ∈ (𝒫 𝐶 ∩ Fin) ↦ Σ𝑛𝑥 𝐷) ⊆ ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵))
261227, 260eqssd 3604 . . . 4 ((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵) = ran (𝑥 ∈ (𝒫 𝐶 ∩ Fin) ↦ Σ𝑛𝑥 𝐷))
262261supeq1d 8303 . . 3 ((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) → sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) = sup(ran (𝑥 ∈ (𝒫 𝐶 ∩ Fin) ↦ Σ𝑛𝑥 𝐷), ℝ*, < ))
2636adantr 481 . . . 4 ((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) → 𝐴 ∈ V)
26499, 263, 216sge0revalmpt 39923 . . 3 ((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) → (Σ^‘(𝑘𝐴𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ))
2651adantr 481 . . . 4 ((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) → 𝐶𝑉)
266107, 265, 210sge0revalmpt 39923 . . 3 ((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) → (Σ^‘(𝑛𝐶𝐷)) = sup(ran (𝑥 ∈ (𝒫 𝐶 ∩ Fin) ↦ Σ𝑛𝑥 𝐷), ℝ*, < ))
267262, 264, 2663eqtr4d 2665 . 2 ((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) → (Σ^‘(𝑘𝐴𝐵)) = (Σ^‘(𝑛𝐶𝐷)))
26869, 267pm2.61dan 831 1 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = (Σ^‘(𝑛𝐶𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wnf 1705  wcel 1987  wrex 2908  Vcvv 3189  csb 3518  cin 3558  wss 3559  𝒫 cpw 4135  cmpt 4678  ccnv 5078  dom cdm 5079  ran crn 5080  cres 5081  cima 5082  Fun wfun 5846  wf 5848  1-1wf1 5849  ontowfo 5850  1-1-ontowf1o 5851  cfv 5852  (class class class)co 6610  Fincfn 7906  supcsup 8297  cc 9885  cr 9886  0cc0 9887  +∞cpnf 10022  *cxr 10024   < clt 10025  [,)cico 12126  [,]cicc 12127  Σcsu 14357  Σ^csumge0 39907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8489  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-sup 8299  df-oi 8366  df-card 8716  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-n0 11244  df-z 11329  df-uz 11639  df-rp 11784  df-ico 12130  df-icc 12131  df-fz 12276  df-fzo 12414  df-seq 12749  df-exp 12808  df-hash 13065  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-clim 14160  df-sum 14358  df-sumge0 39908
This theorem is referenced by:  sge0resrnlem  39948  sge0fodjrnlem  39961  sge0xp  39974  meadjiunlem  40010  isomenndlem  40072  ovnsubaddlem1  40112
  Copyright terms: Public domain W3C validator