Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0f1o Structured version   Visualization version   GIF version

Theorem sge0f1o 42657
Description: Re-index a nonnegative extended sum using a bijection. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0f1o.1 𝑘𝜑
sge0f1o.2 𝑛𝜑
sge0f1o.3 (𝑘 = 𝐺𝐵 = 𝐷)
sge0f1o.4 (𝜑𝐶𝑉)
sge0f1o.5 (𝜑𝐹:𝐶1-1-onto𝐴)
sge0f1o.6 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
sge0f1o.7 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
Assertion
Ref Expression
sge0f1o (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = (Σ^‘(𝑛𝐶𝐷)))
Distinct variable groups:   𝐴,𝑘,𝑛   𝐵,𝑛   𝐶,𝑘,𝑛   𝐷,𝑘   𝑘,𝐹,𝑛   𝑘,𝐺
Allowed substitution hints:   𝜑(𝑘,𝑛)   𝐵(𝑘)   𝐷(𝑛)   𝐺(𝑛)   𝑉(𝑘,𝑛)

Proof of Theorem sge0f1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0f1o.4 . . . . . 6 (𝜑𝐶𝑉)
2 sge0f1o.5 . . . . . . 7 (𝜑𝐹:𝐶1-1-onto𝐴)
3 f1ofo 6617 . . . . . . 7 (𝐹:𝐶1-1-onto𝐴𝐹:𝐶onto𝐴)
42, 3syl 17 . . . . . 6 (𝜑𝐹:𝐶onto𝐴)
5 fornex 7651 . . . . . 6 (𝐶𝑉 → (𝐹:𝐶onto𝐴𝐴 ∈ V))
61, 4, 5sylc 65 . . . . 5 (𝜑𝐴 ∈ V)
76adantr 483 . . . 4 ((𝜑 ∧ +∞ ∈ ran (𝑛𝐶𝐷)) → 𝐴 ∈ V)
8 sge0f1o.1 . . . . . 6 𝑘𝜑
9 sge0f1o.7 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
10 eqid 2821 . . . . . 6 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
118, 9, 10fmptdf 6876 . . . . 5 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
1211adantr 483 . . . 4 ((𝜑 ∧ +∞ ∈ ran (𝑛𝐶𝐷)) → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
13 pnfex 10688 . . . . . . . 8 +∞ ∈ V
14 eqid 2821 . . . . . . . . 9 (𝑛𝐶𝐷) = (𝑛𝐶𝐷)
1514elrnmpt 5823 . . . . . . . 8 (+∞ ∈ V → (+∞ ∈ ran (𝑛𝐶𝐷) ↔ ∃𝑛𝐶 +∞ = 𝐷))
1613, 15ax-mp 5 . . . . . . 7 (+∞ ∈ ran (𝑛𝐶𝐷) ↔ ∃𝑛𝐶 +∞ = 𝐷)
1716biimpi 218 . . . . . 6 (+∞ ∈ ran (𝑛𝐶𝐷) → ∃𝑛𝐶 +∞ = 𝐷)
1817adantl 484 . . . . 5 ((𝜑 ∧ +∞ ∈ ran (𝑛𝐶𝐷)) → ∃𝑛𝐶 +∞ = 𝐷)
19 sge0f1o.2 . . . . . . 7 𝑛𝜑
20 nfv 1911 . . . . . . 7 𝑛+∞ ∈ ran (𝑘𝐴𝐵)
21 simp3 1134 . . . . . . . . . 10 ((𝜑𝑛𝐶 ∧ +∞ = 𝐷) → +∞ = 𝐷)
22 f1of 6610 . . . . . . . . . . . . . . 15 (𝐹:𝐶1-1-onto𝐴𝐹:𝐶𝐴)
232, 22syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹:𝐶𝐴)
2423ffvelrnda 6846 . . . . . . . . . . . . 13 ((𝜑𝑛𝐶) → (𝐹𝑛) ∈ 𝐴)
25 sge0f1o.6 . . . . . . . . . . . . 13 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
26 nfcv 2977 . . . . . . . . . . . . . 14 𝑘(𝐹𝑛)
27 nfv 1911 . . . . . . . . . . . . . . 15 𝑘(𝐹𝑛) = 𝐺
2826nfcsb1 3906 . . . . . . . . . . . . . . . 16 𝑘(𝐹𝑛) / 𝑘𝐵
29 nfcv 2977 . . . . . . . . . . . . . . . 16 𝑘𝐷
3028, 29nfeq 2991 . . . . . . . . . . . . . . 15 𝑘(𝐹𝑛) / 𝑘𝐵 = 𝐷
3127, 30nfim 1893 . . . . . . . . . . . . . 14 𝑘((𝐹𝑛) = 𝐺(𝐹𝑛) / 𝑘𝐵 = 𝐷)
32 eqeq1 2825 . . . . . . . . . . . . . . 15 (𝑘 = (𝐹𝑛) → (𝑘 = 𝐺 ↔ (𝐹𝑛) = 𝐺))
33 csbeq1a 3897 . . . . . . . . . . . . . . . 16 (𝑘 = (𝐹𝑛) → 𝐵 = (𝐹𝑛) / 𝑘𝐵)
3433eqeq1d 2823 . . . . . . . . . . . . . . 15 (𝑘 = (𝐹𝑛) → (𝐵 = 𝐷(𝐹𝑛) / 𝑘𝐵 = 𝐷))
3532, 34imbi12d 347 . . . . . . . . . . . . . 14 (𝑘 = (𝐹𝑛) → ((𝑘 = 𝐺𝐵 = 𝐷) ↔ ((𝐹𝑛) = 𝐺(𝐹𝑛) / 𝑘𝐵 = 𝐷)))
36 sge0f1o.3 . . . . . . . . . . . . . 14 (𝑘 = 𝐺𝐵 = 𝐷)
3726, 31, 35, 36vtoclgf 3566 . . . . . . . . . . . . 13 ((𝐹𝑛) ∈ 𝐴 → ((𝐹𝑛) = 𝐺(𝐹𝑛) / 𝑘𝐵 = 𝐷))
3824, 25, 37sylc 65 . . . . . . . . . . . 12 ((𝜑𝑛𝐶) → (𝐹𝑛) / 𝑘𝐵 = 𝐷)
3938eqcomd 2827 . . . . . . . . . . 11 ((𝜑𝑛𝐶) → 𝐷 = (𝐹𝑛) / 𝑘𝐵)
40393adant3 1128 . . . . . . . . . 10 ((𝜑𝑛𝐶 ∧ +∞ = 𝐷) → 𝐷 = (𝐹𝑛) / 𝑘𝐵)
4121, 40eqtrd 2856 . . . . . . . . 9 ((𝜑𝑛𝐶 ∧ +∞ = 𝐷) → +∞ = (𝐹𝑛) / 𝑘𝐵)
42 simpl 485 . . . . . . . . . . . . 13 ((𝜑𝑛𝐶) → 𝜑)
4342, 24jca 514 . . . . . . . . . . . 12 ((𝜑𝑛𝐶) → (𝜑 ∧ (𝐹𝑛) ∈ 𝐴))
44 nfv 1911 . . . . . . . . . . . . . . 15 𝑘(𝐹𝑛) ∈ 𝐴
458, 44nfan 1896 . . . . . . . . . . . . . 14 𝑘(𝜑 ∧ (𝐹𝑛) ∈ 𝐴)
4628nfel1 2994 . . . . . . . . . . . . . 14 𝑘(𝐹𝑛) / 𝑘𝐵 ∈ (0[,]+∞)
4745, 46nfim 1893 . . . . . . . . . . . . 13 𝑘((𝜑 ∧ (𝐹𝑛) ∈ 𝐴) → (𝐹𝑛) / 𝑘𝐵 ∈ (0[,]+∞))
48 eleq1 2900 . . . . . . . . . . . . . . 15 (𝑘 = (𝐹𝑛) → (𝑘𝐴 ↔ (𝐹𝑛) ∈ 𝐴))
4948anbi2d 630 . . . . . . . . . . . . . 14 (𝑘 = (𝐹𝑛) → ((𝜑𝑘𝐴) ↔ (𝜑 ∧ (𝐹𝑛) ∈ 𝐴)))
5033eleq1d 2897 . . . . . . . . . . . . . 14 (𝑘 = (𝐹𝑛) → (𝐵 ∈ (0[,]+∞) ↔ (𝐹𝑛) / 𝑘𝐵 ∈ (0[,]+∞)))
5149, 50imbi12d 347 . . . . . . . . . . . . 13 (𝑘 = (𝐹𝑛) → (((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞)) ↔ ((𝜑 ∧ (𝐹𝑛) ∈ 𝐴) → (𝐹𝑛) / 𝑘𝐵 ∈ (0[,]+∞))))
5226, 47, 51, 9vtoclgf 3566 . . . . . . . . . . . 12 ((𝐹𝑛) ∈ 𝐴 → ((𝜑 ∧ (𝐹𝑛) ∈ 𝐴) → (𝐹𝑛) / 𝑘𝐵 ∈ (0[,]+∞)))
5324, 43, 52sylc 65 . . . . . . . . . . 11 ((𝜑𝑛𝐶) → (𝐹𝑛) / 𝑘𝐵 ∈ (0[,]+∞))
5428, 10, 33elrnmpt1sf 41442 . . . . . . . . . . 11 (((𝐹𝑛) ∈ 𝐴(𝐹𝑛) / 𝑘𝐵 ∈ (0[,]+∞)) → (𝐹𝑛) / 𝑘𝐵 ∈ ran (𝑘𝐴𝐵))
5524, 53, 54syl2anc 586 . . . . . . . . . 10 ((𝜑𝑛𝐶) → (𝐹𝑛) / 𝑘𝐵 ∈ ran (𝑘𝐴𝐵))
56553adant3 1128 . . . . . . . . 9 ((𝜑𝑛𝐶 ∧ +∞ = 𝐷) → (𝐹𝑛) / 𝑘𝐵 ∈ ran (𝑘𝐴𝐵))
5741, 56eqeltrd 2913 . . . . . . . 8 ((𝜑𝑛𝐶 ∧ +∞ = 𝐷) → +∞ ∈ ran (𝑘𝐴𝐵))
58573exp 1115 . . . . . . 7 (𝜑 → (𝑛𝐶 → (+∞ = 𝐷 → +∞ ∈ ran (𝑘𝐴𝐵))))
5919, 20, 58rexlimd 3317 . . . . . 6 (𝜑 → (∃𝑛𝐶 +∞ = 𝐷 → +∞ ∈ ran (𝑘𝐴𝐵)))
6059adantr 483 . . . . 5 ((𝜑 ∧ +∞ ∈ ran (𝑛𝐶𝐷)) → (∃𝑛𝐶 +∞ = 𝐷 → +∞ ∈ ran (𝑘𝐴𝐵)))
6118, 60mpd 15 . . . 4 ((𝜑 ∧ +∞ ∈ ran (𝑛𝐶𝐷)) → +∞ ∈ ran (𝑘𝐴𝐵))
627, 12, 61sge0pnfval 42648 . . 3 ((𝜑 ∧ +∞ ∈ ran (𝑛𝐶𝐷)) → (Σ^‘(𝑘𝐴𝐵)) = +∞)
631adantr 483 . . . 4 ((𝜑 ∧ +∞ ∈ ran (𝑛𝐶𝐷)) → 𝐶𝑉)
6439, 53eqeltrd 2913 . . . . . 6 ((𝜑𝑛𝐶) → 𝐷 ∈ (0[,]+∞))
6519, 64, 14fmptdf 6876 . . . . 5 (𝜑 → (𝑛𝐶𝐷):𝐶⟶(0[,]+∞))
6665adantr 483 . . . 4 ((𝜑 ∧ +∞ ∈ ran (𝑛𝐶𝐷)) → (𝑛𝐶𝐷):𝐶⟶(0[,]+∞))
67 simpr 487 . . . 4 ((𝜑 ∧ +∞ ∈ ran (𝑛𝐶𝐷)) → +∞ ∈ ran (𝑛𝐶𝐷))
6863, 66, 67sge0pnfval 42648 . . 3 ((𝜑 ∧ +∞ ∈ ran (𝑛𝐶𝐷)) → (Σ^‘(𝑛𝐶𝐷)) = +∞)
6962, 68eqtr4d 2859 . 2 ((𝜑 ∧ +∞ ∈ ran (𝑛𝐶𝐷)) → (Σ^‘(𝑘𝐴𝐵)) = (Σ^‘(𝑛𝐶𝐷)))
70 sumex 15038 . . . . . . 7 Σ𝑘𝑦 𝐵 ∈ V
7170a1i 11 . . . . . 6 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 𝐵 ∈ V)
72 cnvimass 5944 . . . . . . . . . . . 12 (𝐹𝑦) ⊆ dom 𝐹
7372, 23fssdm 6525 . . . . . . . . . . 11 (𝜑 → (𝐹𝑦) ⊆ 𝐶)
74 fex 6983 . . . . . . . . . . . . . . 15 ((𝐹:𝐶𝐴𝐶𝑉) → 𝐹 ∈ V)
7523, 1, 74syl2anc 586 . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ V)
76 cnvexg 7623 . . . . . . . . . . . . . 14 (𝐹 ∈ V → 𝐹 ∈ V)
7775, 76syl 17 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ V)
78 imaexg 7614 . . . . . . . . . . . . 13 (𝐹 ∈ V → (𝐹𝑦) ∈ V)
7977, 78syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐹𝑦) ∈ V)
80 elpwg 4545 . . . . . . . . . . . 12 ((𝐹𝑦) ∈ V → ((𝐹𝑦) ∈ 𝒫 𝐶 ↔ (𝐹𝑦) ⊆ 𝐶))
8179, 80syl 17 . . . . . . . . . . 11 (𝜑 → ((𝐹𝑦) ∈ 𝒫 𝐶 ↔ (𝐹𝑦) ⊆ 𝐶))
8273, 81mpbird 259 . . . . . . . . . 10 (𝜑 → (𝐹𝑦) ∈ 𝒫 𝐶)
8382adantr 483 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑦) ∈ 𝒫 𝐶)
84 f1ocnv 6622 . . . . . . . . . . . . 13 (𝐹:𝐶1-1-onto𝐴𝐹:𝐴1-1-onto𝐶)
852, 84syl 17 . . . . . . . . . . . 12 (𝜑𝐹:𝐴1-1-onto𝐶)
86 f1ofun 6612 . . . . . . . . . . . 12 (𝐹:𝐴1-1-onto𝐶 → Fun 𝐹)
8785, 86syl 17 . . . . . . . . . . 11 (𝜑 → Fun 𝐹)
8887adantr 483 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Fun 𝐹)
89 elinel2 4173 . . . . . . . . . . 11 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
9089adantl 484 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
91 imafi 8811 . . . . . . . . . 10 ((Fun 𝐹𝑦 ∈ Fin) → (𝐹𝑦) ∈ Fin)
9288, 90, 91syl2anc 586 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑦) ∈ Fin)
9383, 92elind 4171 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin))
9493adantlr 713 . . . . . . 7 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin))
95 nfv 1911 . . . . . . . . . 10 𝑘 ¬ +∞ ∈ ran (𝑛𝐶𝐷)
968, 95nfan 1896 . . . . . . . . 9 𝑘(𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷))
97 nfv 1911 . . . . . . . . 9 𝑘 𝑦 ∈ (𝒫 𝐴 ∩ Fin)
9896, 97nfan 1896 . . . . . . . 8 𝑘((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
99 nfcv 2977 . . . . . . . . . . . 12 𝑛+∞
100 nfmpt1 5157 . . . . . . . . . . . . 13 𝑛(𝑛𝐶𝐷)
101100nfrn 5819 . . . . . . . . . . . 12 𝑛ran (𝑛𝐶𝐷)
10299, 101nfel 2992 . . . . . . . . . . 11 𝑛+∞ ∈ ran (𝑛𝐶𝐷)
103102nfn 1853 . . . . . . . . . 10 𝑛 ¬ +∞ ∈ ran (𝑛𝐶𝐷)
10419, 103nfan 1896 . . . . . . . . 9 𝑛(𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷))
105 nfv 1911 . . . . . . . . 9 𝑛 𝑦 ∈ (𝒫 𝐴 ∩ Fin)
106104, 105nfan 1896 . . . . . . . 8 𝑛((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
10792adantlr 713 . . . . . . . 8 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑦) ∈ Fin)
108 f1of1 6609 . . . . . . . . . . . . 13 (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1𝐴)
1092, 108syl 17 . . . . . . . . . . . 12 (𝜑𝐹:𝐶1-1𝐴)
110109adantr 483 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹:𝐶1-1𝐴)
11181adantr 483 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹𝑦) ∈ 𝒫 𝐶 ↔ (𝐹𝑦) ⊆ 𝐶))
11283, 111mpbid 234 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑦) ⊆ 𝐶)
113 f1ores 6624 . . . . . . . . . . 11 ((𝐹:𝐶1-1𝐴 ∧ (𝐹𝑦) ⊆ 𝐶) → (𝐹 ↾ (𝐹𝑦)):(𝐹𝑦)–1-1-onto→(𝐹 “ (𝐹𝑦)))
114110, 112, 113syl2anc 586 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 ↾ (𝐹𝑦)):(𝐹𝑦)–1-1-onto→(𝐹 “ (𝐹𝑦)))
1154adantr 483 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹:𝐶onto𝐴)
116 elpwinss 41304 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
117116adantl 484 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦𝐴)
118 foimacnv 6627 . . . . . . . . . . . 12 ((𝐹:𝐶onto𝐴𝑦𝐴) → (𝐹 “ (𝐹𝑦)) = 𝑦)
119115, 117, 118syl2anc 586 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 “ (𝐹𝑦)) = 𝑦)
120119f1oeq3d 6607 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹 ↾ (𝐹𝑦)):(𝐹𝑦)–1-1-onto→(𝐹 “ (𝐹𝑦)) ↔ (𝐹 ↾ (𝐹𝑦)):(𝐹𝑦)–1-1-onto𝑦))
121114, 120mpbid 234 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 ↾ (𝐹𝑦)):(𝐹𝑦)–1-1-onto𝑦)
122121adantlr 713 . . . . . . . 8 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 ↾ (𝐹𝑦)):(𝐹𝑦)–1-1-onto𝑦)
12379ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑛 ∈ (𝐹𝑦)) → (𝐹𝑦) ∈ V)
124 simpll 765 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑛 ∈ (𝐹𝑦)) → 𝜑)
12593adantr 483 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑛 ∈ (𝐹𝑦)) → (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin))
126 simpr 487 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑛 ∈ (𝐹𝑦)) → 𝑛 ∈ (𝐹𝑦))
127124, 125, 126jca31 517 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑛 ∈ (𝐹𝑦)) → ((𝜑 ∧ (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛 ∈ (𝐹𝑦)))
128 eleq1 2900 . . . . . . . . . . . . . 14 (𝑥 = (𝐹𝑦) → (𝑥 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin)))
129128anbi2d 630 . . . . . . . . . . . . 13 (𝑥 = (𝐹𝑦) → ((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ↔ (𝜑 ∧ (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin))))
130 eleq2 2901 . . . . . . . . . . . . 13 (𝑥 = (𝐹𝑦) → (𝑛𝑥𝑛 ∈ (𝐹𝑦)))
131129, 130anbi12d 632 . . . . . . . . . . . 12 (𝑥 = (𝐹𝑦) → (((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛𝑥) ↔ ((𝜑 ∧ (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛 ∈ (𝐹𝑦))))
132 reseq2 5843 . . . . . . . . . . . . . 14 (𝑥 = (𝐹𝑦) → (𝐹𝑥) = (𝐹 ↾ (𝐹𝑦)))
133132fveq1d 6667 . . . . . . . . . . . . 13 (𝑥 = (𝐹𝑦) → ((𝐹𝑥)‘𝑛) = ((𝐹 ↾ (𝐹𝑦))‘𝑛))
134133eqeq1d 2823 . . . . . . . . . . . 12 (𝑥 = (𝐹𝑦) → (((𝐹𝑥)‘𝑛) = 𝐺 ↔ ((𝐹 ↾ (𝐹𝑦))‘𝑛) = 𝐺))
135131, 134imbi12d 347 . . . . . . . . . . 11 (𝑥 = (𝐹𝑦) → ((((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛𝑥) → ((𝐹𝑥)‘𝑛) = 𝐺) ↔ (((𝜑 ∧ (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛 ∈ (𝐹𝑦)) → ((𝐹 ↾ (𝐹𝑦))‘𝑛) = 𝐺)))
136 fvres 6684 . . . . . . . . . . . . 13 (𝑛𝑥 → ((𝐹𝑥)‘𝑛) = (𝐹𝑛))
137136adantl 484 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛𝑥) → ((𝐹𝑥)‘𝑛) = (𝐹𝑛))
138 simpll 765 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛𝑥) → 𝜑)
139 elpwinss 41304 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝒫 𝐶 ∩ Fin) → 𝑥𝐶)
140139adantl 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑥𝐶)
141140sselda 3967 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛𝑥) → 𝑛𝐶)
142138, 141, 25syl2anc 586 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛𝑥) → (𝐹𝑛) = 𝐺)
143137, 142eqtrd 2856 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛𝑥) → ((𝐹𝑥)‘𝑛) = 𝐺)
144135, 143vtoclg 3568 . . . . . . . . . 10 ((𝐹𝑦) ∈ V → (((𝜑 ∧ (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛 ∈ (𝐹𝑦)) → ((𝐹 ↾ (𝐹𝑦))‘𝑛) = 𝐺))
145123, 127, 144sylc 65 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑛 ∈ (𝐹𝑦)) → ((𝐹 ↾ (𝐹𝑦))‘𝑛) = 𝐺)
146145adantllr 717 . . . . . . . 8 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑛 ∈ (𝐹𝑦)) → ((𝐹 ↾ (𝐹𝑦))‘𝑛) = 𝐺)
14779ad3antrrr 728 . . . . . . . . 9 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → (𝐹𝑦) ∈ V)
148 simpll 765 . . . . . . . . . 10 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → (𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)))
14982ad3antrrr 728 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → (𝐹𝑦) ∈ 𝒫 𝐶)
150107adantr 483 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → (𝐹𝑦) ∈ Fin)
151149, 150elind 4171 . . . . . . . . . 10 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin))
152 simpr 487 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝑘𝑦)
153119eqcomd 2827 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 = (𝐹 “ (𝐹𝑦)))
154153adantr 483 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝑦 = (𝐹 “ (𝐹𝑦)))
155152, 154eleqtrd 2915 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝑘 ∈ (𝐹 “ (𝐹𝑦)))
156155adantllr 717 . . . . . . . . . 10 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝑘 ∈ (𝐹 “ (𝐹𝑦)))
157148, 151, 156jca31 517 . . . . . . . . 9 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ (𝐹𝑦))))
158128anbi2d 630 . . . . . . . . . . . 12 (𝑥 = (𝐹𝑦) → (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ↔ ((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin))))
159 imaeq2 5920 . . . . . . . . . . . . 13 (𝑥 = (𝐹𝑦) → (𝐹𝑥) = (𝐹 “ (𝐹𝑦)))
160159eleq2d 2898 . . . . . . . . . . . 12 (𝑥 = (𝐹𝑦) → (𝑘 ∈ (𝐹𝑥) ↔ 𝑘 ∈ (𝐹 “ (𝐹𝑦))))
161158, 160anbi12d 632 . . . . . . . . . . 11 (𝑥 = (𝐹𝑦) → ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹𝑥)) ↔ (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ (𝐹𝑦)))))
162161imbi1d 344 . . . . . . . . . 10 (𝑥 = (𝐹𝑦) → (((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹𝑥)) → 𝐵 ∈ ℂ) ↔ ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ (𝐹𝑦))) → 𝐵 ∈ ℂ)))
163 rge0ssre 12838 . . . . . . . . . . . . 13 (0[,)+∞) ⊆ ℝ
164 ax-resscn 10588 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
165163, 164sstri 3976 . . . . . . . . . . . 12 (0[,)+∞) ⊆ ℂ
166 simplll 773 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹𝑥)) → 𝜑)
167 simpllr 774 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹𝑥)) → ¬ +∞ ∈ ran (𝑛𝐶𝐷))
168 fimass 6550 . . . . . . . . . . . . . . . . 17 (𝐹:𝐶𝐴 → (𝐹𝑥) ⊆ 𝐴)
16923, 168syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹𝑥) ⊆ 𝐴)
170169ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹𝑥)) → (𝐹𝑥) ⊆ 𝐴)
171 simpr 487 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹𝑥)) → 𝑘 ∈ (𝐹𝑥))
172170, 171sseldd 3968 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹𝑥)) → 𝑘𝐴)
173172adantllr 717 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹𝑥)) → 𝑘𝐴)
174 foelrni 6722 . . . . . . . . . . . . . . . 16 ((𝐹:𝐶onto𝐴𝑘𝐴) → ∃𝑛𝐶 (𝐹𝑛) = 𝑘)
1754, 174sylan 582 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → ∃𝑛𝐶 (𝐹𝑛) = 𝑘)
176175adantlr 713 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑘𝐴) → ∃𝑛𝐶 (𝐹𝑛) = 𝑘)
177 nfv 1911 . . . . . . . . . . . . . . . 16 𝑛 𝑘𝐴
178104, 177nfan 1896 . . . . . . . . . . . . . . 15 𝑛((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑘𝐴)
179 nfv 1911 . . . . . . . . . . . . . . 15 𝑛 𝐵 ∈ (0[,)+∞)
180 csbid 3896 . . . . . . . . . . . . . . . . . . . . . 22 𝑘 / 𝑘𝐵 = 𝐵
181180eqcomi 2830 . . . . . . . . . . . . . . . . . . . . 21 𝐵 = 𝑘 / 𝑘𝐵
182181a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛𝐶 ∧ (𝐹𝑛) = 𝑘) → 𝐵 = 𝑘 / 𝑘𝐵)
183 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹𝑛) = 𝑘 → (𝐹𝑛) = 𝑘)
184183eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝑛) = 𝑘𝑘 = (𝐹𝑛))
185184csbeq1d 3887 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑛) = 𝑘𝑘 / 𝑘𝐵 = (𝐹𝑛) / 𝑘𝐵)
1861853ad2ant3 1131 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛𝐶 ∧ (𝐹𝑛) = 𝑘) → 𝑘 / 𝑘𝐵 = (𝐹𝑛) / 𝑘𝐵)
18738idi 1 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛𝐶) → (𝐹𝑛) / 𝑘𝐵 = 𝐷)
1881873adant3 1128 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛𝐶 ∧ (𝐹𝑛) = 𝑘) → (𝐹𝑛) / 𝑘𝐵 = 𝐷)
189182, 186, 1883eqtrd 2860 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛𝐶 ∧ (𝐹𝑛) = 𝑘) → 𝐵 = 𝐷)
1901893adant1r 1173 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑛𝐶 ∧ (𝐹𝑛) = 𝑘) → 𝐵 = 𝐷)
191 0xr 10682 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ ℝ*
192191a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → 0 ∈ ℝ*)
193 pnfxr 10689 . . . . . . . . . . . . . . . . . . . . . . . . 25 +∞ ∈ ℝ*
194193a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → +∞ ∈ ℝ*)
19564adantr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → 𝐷 ∈ (0[,]+∞))
196 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → ¬ 𝐷 ∈ (0[,)+∞))
197192, 194, 195, 196eliccnelico 41797 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → 𝐷 = +∞)
198197eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → +∞ = 𝐷)
199 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛𝐶) → 𝑛𝐶)
20064idi 1 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛𝐶) → 𝐷 ∈ (0[,]+∞))
20114elrnmpt1 5825 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛𝐶𝐷 ∈ (0[,]+∞)) → 𝐷 ∈ ran (𝑛𝐶𝐷))
202199, 200, 201syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛𝐶) → 𝐷 ∈ ran (𝑛𝐶𝐷))
203202adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → 𝐷 ∈ ran (𝑛𝐶𝐷))
204198, 203eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → +∞ ∈ ran (𝑛𝐶𝐷))
205204adantllr 717 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑛𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → +∞ ∈ ran (𝑛𝐶𝐷))
206 simpllr 774 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑛𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → ¬ +∞ ∈ ran (𝑛𝐶𝐷))
207205, 206condan 816 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑛𝐶) → 𝐷 ∈ (0[,)+∞))
2082073adant3 1128 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑛𝐶 ∧ (𝐹𝑛) = 𝑘) → 𝐷 ∈ (0[,)+∞))
209190, 208eqeltrd 2913 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑛𝐶 ∧ (𝐹𝑛) = 𝑘) → 𝐵 ∈ (0[,)+∞))
2102093exp 1115 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) → (𝑛𝐶 → ((𝐹𝑛) = 𝑘𝐵 ∈ (0[,)+∞))))
211210adantr 483 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑘𝐴) → (𝑛𝐶 → ((𝐹𝑛) = 𝑘𝐵 ∈ (0[,)+∞))))
212178, 179, 211rexlimd 3317 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑘𝐴) → (∃𝑛𝐶 (𝐹𝑛) = 𝑘𝐵 ∈ (0[,)+∞)))
213176, 212mpd 15 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
214166, 167, 173, 213syl21anc 835 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹𝑥)) → 𝐵 ∈ (0[,)+∞))
215165, 214sseldi 3965 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹𝑥)) → 𝐵 ∈ ℂ)
216215idi 1 . . . . . . . . . 10 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹𝑥)) → 𝐵 ∈ ℂ)
217162, 216vtoclg 3568 . . . . . . . . 9 ((𝐹𝑦) ∈ V → ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ (𝐹𝑦))) → 𝐵 ∈ ℂ))
218147, 157, 217sylc 65 . . . . . . . 8 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
21998, 106, 36, 107, 122, 146, 218fsumf1of 41847 . . . . . . 7 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 𝐵 = Σ𝑛 ∈ (𝐹𝑦)𝐷)
220 sumeq1 15039 . . . . . . . 8 (𝑥 = (𝐹𝑦) → Σ𝑛𝑥 𝐷 = Σ𝑛 ∈ (𝐹𝑦)𝐷)
221220rspceeqv 3638 . . . . . . 7 (((𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin) ∧ Σ𝑘𝑦 𝐵 = Σ𝑛 ∈ (𝐹𝑦)𝐷) → ∃𝑥 ∈ (𝒫 𝐶 ∩ Fin)Σ𝑘𝑦 𝐵 = Σ𝑛𝑥 𝐷)
22294, 219, 221syl2anc 586 . . . . . 6 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ∃𝑥 ∈ (𝒫 𝐶 ∩ Fin)Σ𝑘𝑦 𝐵 = Σ𝑛𝑥 𝐷)
22371, 222rnmptssrn 41434 . . . . 5 ((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵) ⊆ ran (𝑥 ∈ (𝒫 𝐶 ∩ Fin) ↦ Σ𝑛𝑥 𝐷))
224 sumex 15038 . . . . . . 7 Σ𝑛𝑥 𝐷 ∈ V
225224a1i 11 . . . . . 6 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → Σ𝑛𝑥 𝐷 ∈ V)
2266, 169ssexd 5221 . . . . . . . . . . . 12 (𝜑 → (𝐹𝑥) ∈ V)
227 elpwg 4545 . . . . . . . . . . . 12 ((𝐹𝑥) ∈ V → ((𝐹𝑥) ∈ 𝒫 𝐴 ↔ (𝐹𝑥) ⊆ 𝐴))
228226, 227syl 17 . . . . . . . . . . 11 (𝜑 → ((𝐹𝑥) ∈ 𝒫 𝐴 ↔ (𝐹𝑥) ⊆ 𝐴))
229169, 228mpbird 259 . . . . . . . . . 10 (𝜑 → (𝐹𝑥) ∈ 𝒫 𝐴)
230229adantr 483 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹𝑥) ∈ 𝒫 𝐴)
23123ffund 6513 . . . . . . . . . . 11 (𝜑 → Fun 𝐹)
232231adantr 483 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → Fun 𝐹)
233 elinel2 4173 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 𝐶 ∩ Fin) → 𝑥 ∈ Fin)
234233adantl 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑥 ∈ Fin)
235 imafi 8811 . . . . . . . . . 10 ((Fun 𝐹𝑥 ∈ Fin) → (𝐹𝑥) ∈ Fin)
236232, 234, 235syl2anc 586 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹𝑥) ∈ Fin)
237230, 236elind 4171 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹𝑥) ∈ (𝒫 𝐴 ∩ Fin))
238237adantlr 713 . . . . . . 7 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹𝑥) ∈ (𝒫 𝐴 ∩ Fin))
239 nfv 1911 . . . . . . . . . 10 𝑘 𝑥 ∈ (𝒫 𝐶 ∩ Fin)
24096, 239nfan 1896 . . . . . . . . 9 𝑘((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin))
241 nfv 1911 . . . . . . . . . 10 𝑛 𝑥 ∈ (𝒫 𝐶 ∩ Fin)
242104, 241nfan 1896 . . . . . . . . 9 𝑛((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin))
243233adantl 484 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑥 ∈ Fin)
244109adantr 483 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → 𝐹:𝐶1-1𝐴)
245 f1ores 6624 . . . . . . . . . . 11 ((𝐹:𝐶1-1𝐴𝑥𝐶) → (𝐹𝑥):𝑥1-1-onto→(𝐹𝑥))
246244, 140, 245syl2anc 586 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹𝑥):𝑥1-1-onto→(𝐹𝑥))
247246adantlr 713 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹𝑥):𝑥1-1-onto→(𝐹𝑥))
248143adantllr 717 . . . . . . . . 9 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛𝑥) → ((𝐹𝑥)‘𝑛) = 𝐺)
249240, 242, 36, 243, 247, 248, 215fsumf1of 41847 . . . . . . . 8 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → Σ𝑘 ∈ (𝐹𝑥)𝐵 = Σ𝑛𝑥 𝐷)
250249eqcomd 2827 . . . . . . 7 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → Σ𝑛𝑥 𝐷 = Σ𝑘 ∈ (𝐹𝑥)𝐵)
251 sumeq1 15039 . . . . . . . 8 (𝑦 = (𝐹𝑥) → Σ𝑘𝑦 𝐵 = Σ𝑘 ∈ (𝐹𝑥)𝐵)
252251rspceeqv 3638 . . . . . . 7 (((𝐹𝑥) ∈ (𝒫 𝐴 ∩ Fin) ∧ Σ𝑛𝑥 𝐷 = Σ𝑘 ∈ (𝐹𝑥)𝐵) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑛𝑥 𝐷 = Σ𝑘𝑦 𝐵)
253238, 250, 252syl2anc 586 . . . . . 6 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑛𝑥 𝐷 = Σ𝑘𝑦 𝐵)
254225, 253rnmptssrn 41434 . . . . 5 ((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) → ran (𝑥 ∈ (𝒫 𝐶 ∩ Fin) ↦ Σ𝑛𝑥 𝐷) ⊆ ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵))
255223, 254eqssd 3984 . . . 4 ((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵) = ran (𝑥 ∈ (𝒫 𝐶 ∩ Fin) ↦ Σ𝑛𝑥 𝐷))
256255supeq1d 8904 . . 3 ((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) → sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) = sup(ran (𝑥 ∈ (𝒫 𝐶 ∩ Fin) ↦ Σ𝑛𝑥 𝐷), ℝ*, < ))
2576adantr 483 . . . 4 ((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) → 𝐴 ∈ V)
25896, 257, 213sge0revalmpt 42653 . . 3 ((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) → (Σ^‘(𝑘𝐴𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ))
2591adantr 483 . . . 4 ((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) → 𝐶𝑉)
260104, 259, 207sge0revalmpt 42653 . . 3 ((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) → (Σ^‘(𝑛𝐶𝐷)) = sup(ran (𝑥 ∈ (𝒫 𝐶 ∩ Fin) ↦ Σ𝑛𝑥 𝐷), ℝ*, < ))
261256, 258, 2603eqtr4d 2866 . 2 ((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) → (Σ^‘(𝑘𝐴𝐵)) = (Σ^‘(𝑛𝐶𝐷)))
26269, 261pm2.61dan 811 1 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = (Σ^‘(𝑛𝐶𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wnf 1780  wcel 2110  wrex 3139  Vcvv 3495  csb 3883  cin 3935  wss 3936  𝒫 cpw 4539  cmpt 5139  ccnv 5549  ran crn 5551  cres 5552  cima 5553  Fun wfun 6344  wf 6346  1-1wf1 6347  ontowfo 6348  1-1-ontowf1o 6349  cfv 6350  (class class class)co 7150  Fincfn 8503  supcsup 8898  cc 10529  cr 10530  0cc0 10531  +∞cpnf 10666  *cxr 10668   < clt 10669  [,)cico 12734  [,]cicc 12735  Σcsu 15036  Σ^csumge0 42637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-sumge0 42638
This theorem is referenced by:  sge0resrnlem  42678  sge0fodjrnlem  42691  sge0xp  42704  meadjiunlem  42740  isomenndlem  42805  ovnsubaddlem1  42845
  Copyright terms: Public domain W3C validator