Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0iunmpt Structured version   Visualization version   GIF version

Theorem sge0iunmpt 42694
Description: Sum of nonnegative extended reals over a disjoint indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0iunmpt.a (𝜑𝐴𝑉)
sge0iunmpt.b ((𝜑𝑥𝐴) → 𝐵𝑊)
sge0iunmpt.dj (𝜑Disj 𝑥𝐴 𝐵)
sge0iunmpt.c ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
Assertion
Ref Expression
sge0iunmpt (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
Distinct variable groups:   𝐴,𝑘,𝑥   𝐵,𝑘   𝑥,𝐶   𝑥,𝑊   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑘)   𝑉(𝑥,𝑘)   𝑊(𝑘)

Proof of Theorem sge0iunmpt
Dummy variables 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1911 . . . 4 𝑥𝜑
2 nfcv 2977 . . . . . 6 𝑥Σ^
3 nfiu1 4945 . . . . . . 7 𝑥 𝑥𝐴 𝐵
4 nfcv 2977 . . . . . . 7 𝑥𝐶
53, 4nfmpt 5155 . . . . . 6 𝑥(𝑘 𝑥𝐴 𝐵𝐶)
62, 5nffv 6674 . . . . 5 𝑥^‘(𝑘 𝑥𝐴 𝐵𝐶))
7 nfmpt1 5156 . . . . . 6 𝑥(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))
82, 7nffv 6674 . . . . 5 𝑥^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))
96, 8nfeq 2991 . . . 4 𝑥^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))
10 sge0iunmpt.a . . . . . . . . . 10 (𝜑𝐴𝑉)
11 sge0iunmpt.b . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵𝑊)
1211ralrimiva 3182 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐴 𝐵𝑊)
13 iunexg 7658 . . . . . . . . . 10 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵𝑊) → 𝑥𝐴 𝐵 ∈ V)
1410, 12, 13syl2anc 586 . . . . . . . . 9 (𝜑 𝑥𝐴 𝐵 ∈ V)
15 eliun 4915 . . . . . . . . . . . . 13 (𝑘 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑘𝐵)
1615biimpi 218 . . . . . . . . . . . 12 (𝑘 𝑥𝐴 𝐵 → ∃𝑥𝐴 𝑘𝐵)
1716adantl 484 . . . . . . . . . . 11 ((𝜑𝑘 𝑥𝐴 𝐵) → ∃𝑥𝐴 𝑘𝐵)
18 nfcv 2977 . . . . . . . . . . . . . 14 𝑥𝑘
1918, 3nfel 2992 . . . . . . . . . . . . 13 𝑥 𝑘 𝑥𝐴 𝐵
201, 19nfan 1896 . . . . . . . . . . . 12 𝑥(𝜑𝑘 𝑥𝐴 𝐵)
214nfel1 2994 . . . . . . . . . . . 12 𝑥 𝐶 ∈ (0[,]+∞)
22 sge0iunmpt.c . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
23223exp 1115 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝐴 → (𝑘𝐵𝐶 ∈ (0[,]+∞))))
2423adantr 483 . . . . . . . . . . . 12 ((𝜑𝑘 𝑥𝐴 𝐵) → (𝑥𝐴 → (𝑘𝐵𝐶 ∈ (0[,]+∞))))
2520, 21, 24rexlimd 3317 . . . . . . . . . . 11 ((𝜑𝑘 𝑥𝐴 𝐵) → (∃𝑥𝐴 𝑘𝐵𝐶 ∈ (0[,]+∞)))
2617, 25mpd 15 . . . . . . . . . 10 ((𝜑𝑘 𝑥𝐴 𝐵) → 𝐶 ∈ (0[,]+∞))
27 eqid 2821 . . . . . . . . . 10 (𝑘 𝑥𝐴 𝐵𝐶) = (𝑘 𝑥𝐴 𝐵𝐶)
2826, 27fmptd 6872 . . . . . . . . 9 (𝜑 → (𝑘 𝑥𝐴 𝐵𝐶): 𝑥𝐴 𝐵⟶(0[,]+∞))
2914, 28sge0xrcl 42661 . . . . . . . 8 (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) ∈ ℝ*)
30293ad2ant1 1129 . . . . . . 7 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) ∈ ℝ*)
31 id 22 . . . . . . . . . . 11 ((Σ^‘(𝑘𝐵𝐶)) = +∞ → (Σ^‘(𝑘𝐵𝐶)) = +∞)
3231eqcomd 2827 . . . . . . . . . 10 ((Σ^‘(𝑘𝐵𝐶)) = +∞ → +∞ = (Σ^‘(𝑘𝐵𝐶)))
3332adantl 484 . . . . . . . . 9 ((𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → +∞ = (Σ^‘(𝑘𝐵𝐶)))
34333adant1 1126 . . . . . . . 8 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → +∞ = (Σ^‘(𝑘𝐵𝐶)))
3514adantr 483 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥𝐴 𝐵 ∈ V)
3626adantlr 713 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑘 𝑥𝐴 𝐵) → 𝐶 ∈ (0[,]+∞))
37 ssiun2 4963 . . . . . . . . . . 11 (𝑥𝐴𝐵 𝑥𝐴 𝐵)
3837adantl 484 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐵 𝑥𝐴 𝐵)
3935, 36, 38sge0lessmpt 42675 . . . . . . . . 9 ((𝜑𝑥𝐴) → (Σ^‘(𝑘𝐵𝐶)) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)))
40393adant3 1128 . . . . . . . 8 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑘𝐵𝐶)) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)))
4134, 40eqbrtrd 5080 . . . . . . 7 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → +∞ ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)))
4230, 41xrgepnfd 41592 . . . . . 6 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = +∞)
43103ad2ant1 1129 . . . . . . 7 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → 𝐴𝑉)
44 nfv 1911 . . . . . . . . . . . . 13 𝑥(𝜑𝑦𝐴)
45 nfcsb1v 3906 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥𝐵
46 nfcsb1v 3906 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥𝑊
4745, 46nfel 2992 . . . . . . . . . . . . 13 𝑥𝑦 / 𝑥𝐵𝑦 / 𝑥𝑊
4844, 47nfim 1893 . . . . . . . . . . . 12 𝑥((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑦 / 𝑥𝑊)
49 eleq1w 2895 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
5049anbi2d 630 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝜑𝑥𝐴) ↔ (𝜑𝑦𝐴)))
51 csbeq1a 3896 . . . . . . . . . . . . . 14 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
52 csbeq1a 3896 . . . . . . . . . . . . . 14 (𝑥 = 𝑦𝑊 = 𝑦 / 𝑥𝑊)
5351, 52eleq12d 2907 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝐵𝑊𝑦 / 𝑥𝐵𝑦 / 𝑥𝑊))
5450, 53imbi12d 347 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → 𝐵𝑊) ↔ ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑦 / 𝑥𝑊)))
5548, 54, 11chvarfv 2238 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑦 / 𝑥𝑊)
5655adantlr 713 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑦𝐴) → 𝑦 / 𝑥𝐵𝑦 / 𝑥𝑊)
5745, 4nfmpt 5155 . . . . . . . . . . . . . 14 𝑥(𝑘𝑦 / 𝑥𝐵𝐶)
58 nfcv 2977 . . . . . . . . . . . . . 14 𝑥(0[,]+∞)
5957, 45, 58nff 6504 . . . . . . . . . . . . 13 𝑥(𝑘𝑦 / 𝑥𝐵𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞)
6044, 59nfim 1893 . . . . . . . . . . . 12 𝑥((𝜑𝑦𝐴) → (𝑘𝑦 / 𝑥𝐵𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞))
6151mpteq1d 5147 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑘𝐵𝐶) = (𝑘𝑦 / 𝑥𝐵𝐶))
6261, 51feq12d 6496 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝑘𝐵𝐶):𝐵⟶(0[,]+∞) ↔ (𝑘𝑦 / 𝑥𝐵𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞)))
6350, 62imbi12d 347 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → (𝑘𝐵𝐶):𝐵⟶(0[,]+∞)) ↔ ((𝜑𝑦𝐴) → (𝑘𝑦 / 𝑥𝐵𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞))))
6423imp31 420 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
65 eqid 2821 . . . . . . . . . . . . 13 (𝑘𝐵𝐶) = (𝑘𝐵𝐶)
6664, 65fmptd 6872 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝑘𝐵𝐶):𝐵⟶(0[,]+∞))
6760, 63, 66chvarfv 2238 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (𝑘𝑦 / 𝑥𝐵𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞))
6867adantlr 713 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑦𝐴) → (𝑘𝑦 / 𝑥𝐵𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞))
6956, 68sge0cl 42657 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑦𝐴) → (Σ^‘(𝑘𝑦 / 𝑥𝐵𝐶)) ∈ (0[,]+∞))
70 nfcv 2977 . . . . . . . . . 10 𝑦^‘(𝑘𝐵𝐶))
712, 57nffv 6674 . . . . . . . . . 10 𝑥^‘(𝑘𝑦 / 𝑥𝐵𝐶))
7261fveq2d 6668 . . . . . . . . . 10 (𝑥 = 𝑦 → (Σ^‘(𝑘𝐵𝐶)) = (Σ^‘(𝑘𝑦 / 𝑥𝐵𝐶)))
7370, 71, 72cbvmpt 5159 . . . . . . . . 9 (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) = (𝑦𝐴 ↦ (Σ^‘(𝑘𝑦 / 𝑥𝐵𝐶)))
7469, 73fmptd 6872 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))):𝐴⟶(0[,]+∞))
75743adant3 1128 . . . . . . 7 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))):𝐴⟶(0[,]+∞))
76 id 22 . . . . . . . . . . 11 (𝑥𝐴𝑥𝐴)
77 fvexd 6679 . . . . . . . . . . 11 (𝑥𝐴 → (Σ^‘(𝑘𝐵𝐶)) ∈ V)
78 eqid 2821 . . . . . . . . . . . 12 (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) = (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))
7978elrnmpt1 5824 . . . . . . . . . . 11 ((𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) ∈ V) → (Σ^‘(𝑘𝐵𝐶)) ∈ ran (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))
8076, 77, 79syl2anc 586 . . . . . . . . . 10 (𝑥𝐴 → (Σ^‘(𝑘𝐵𝐶)) ∈ ran (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))
8180adantr 483 . . . . . . . . 9 ((𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑘𝐵𝐶)) ∈ ran (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))
8233, 81eqeltrd 2913 . . . . . . . 8 ((𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → +∞ ∈ ran (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))
83823adant1 1126 . . . . . . 7 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → +∞ ∈ ran (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))
8443, 75, 83sge0pnfval 42649 . . . . . 6 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) = +∞)
8542, 84eqtr4d 2859 . . . . 5 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
86853exp 1115 . . . 4 (𝜑 → (𝑥𝐴 → ((Σ^‘(𝑘𝐵𝐶)) = +∞ → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))))
871, 9, 86rexlimd 3317 . . 3 (𝜑 → (∃𝑥𝐴^‘(𝑘𝐵𝐶)) = +∞ → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))))
8887imp 409 . 2 ((𝜑 ∧ ∃𝑥𝐴^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
89 simpl 485 . . 3 ((𝜑 ∧ ¬ ∃𝑥𝐴^‘(𝑘𝐵𝐶)) = +∞) → 𝜑)
90 ralnex 3236 . . . . 5 (∀𝑥𝐴 ¬ (Σ^‘(𝑘𝐵𝐶)) = +∞ ↔ ¬ ∃𝑥𝐴^‘(𝑘𝐵𝐶)) = +∞)
91 df-ne 3017 . . . . . . 7 ((Σ^‘(𝑘𝐵𝐶)) ≠ +∞ ↔ ¬ (Σ^‘(𝑘𝐵𝐶)) = +∞)
9291bicomi 226 . . . . . 6 (¬ (Σ^‘(𝑘𝐵𝐶)) = +∞ ↔ (Σ^‘(𝑘𝐵𝐶)) ≠ +∞)
9392ralbii 3165 . . . . 5 (∀𝑥𝐴 ¬ (Σ^‘(𝑘𝐵𝐶)) = +∞ ↔ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞)
9490, 93sylbb1 239 . . . 4 (¬ ∃𝑥𝐴^‘(𝑘𝐵𝐶)) = +∞ → ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞)
9594adantl 484 . . 3 ((𝜑 ∧ ¬ ∃𝑥𝐴^‘(𝑘𝐵𝐶)) = +∞) → ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞)
9610adantr 483 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → 𝐴𝑉)
97 nfcv 2977 . . . . . . . . 9 𝑥𝑊
9845, 97nfel 2992 . . . . . . . 8 𝑥𝑦 / 𝑥𝐵𝑊
9944, 98nfim 1893 . . . . . . 7 𝑥((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑊)
10051eleq1d 2897 . . . . . . . 8 (𝑥 = 𝑦 → (𝐵𝑊𝑦 / 𝑥𝐵𝑊))
10150, 100imbi12d 347 . . . . . . 7 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → 𝐵𝑊) ↔ ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑊)))
10299, 101, 11chvarfv 2238 . . . . . 6 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑊)
103102adantlr 713 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) ∧ 𝑦𝐴) → 𝑦 / 𝑥𝐵𝑊)
104 sge0iunmpt.dj . . . . . . 7 (𝜑Disj 𝑥𝐴 𝐵)
105 nfcv 2977 . . . . . . . 8 𝑦𝐵
106105, 45, 51cbvdisj 5033 . . . . . . 7 (Disj 𝑥𝐴 𝐵Disj 𝑦𝐴 𝑦 / 𝑥𝐵)
107104, 106sylib 220 . . . . . 6 (𝜑Disj 𝑦𝐴 𝑦 / 𝑥𝐵)
108107adantr 483 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → Disj 𝑦𝐴 𝑦 / 𝑥𝐵)
109 nfv 1911 . . . . . . . 8 𝑘(𝜑𝑦𝐴𝑗𝑦 / 𝑥𝐵)
110 nfcsb1v 3906 . . . . . . . . 9 𝑘𝑗 / 𝑘𝐶
111110nfel1 2994 . . . . . . . 8 𝑘𝑗 / 𝑘𝐶 ∈ (0[,]+∞)
112109, 111nfim 1893 . . . . . . 7 𝑘((𝜑𝑦𝐴𝑗𝑦 / 𝑥𝐵) → 𝑗 / 𝑘𝐶 ∈ (0[,]+∞))
113 eleq1w 2895 . . . . . . . . 9 (𝑘 = 𝑗 → (𝑘𝑦 / 𝑥𝐵𝑗𝑦 / 𝑥𝐵))
1141133anbi3d 1438 . . . . . . . 8 (𝑘 = 𝑗 → ((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) ↔ (𝜑𝑦𝐴𝑗𝑦 / 𝑥𝐵)))
115 csbeq1a 3896 . . . . . . . . 9 (𝑘 = 𝑗𝐶 = 𝑗 / 𝑘𝐶)
116115eleq1d 2897 . . . . . . . 8 (𝑘 = 𝑗 → (𝐶 ∈ (0[,]+∞) ↔ 𝑗 / 𝑘𝐶 ∈ (0[,]+∞)))
117114, 116imbi12d 347 . . . . . . 7 (𝑘 = 𝑗 → (((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) → 𝐶 ∈ (0[,]+∞)) ↔ ((𝜑𝑦𝐴𝑗𝑦 / 𝑥𝐵) → 𝑗 / 𝑘𝐶 ∈ (0[,]+∞))))
118 nfv 1911 . . . . . . . . . 10 𝑥 𝑦𝐴
11918, 45nfel 2992 . . . . . . . . . 10 𝑥 𝑘𝑦 / 𝑥𝐵
1201, 118, 119nf3an 1898 . . . . . . . . 9 𝑥(𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵)
121120, 21nfim 1893 . . . . . . . 8 𝑥((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) → 𝐶 ∈ (0[,]+∞))
12251eleq2d 2898 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑘𝐵𝑘𝑦 / 𝑥𝐵))
12349, 1223anbi23d 1435 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝜑𝑥𝐴𝑘𝐵) ↔ (𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵)))
124123imbi1d 344 . . . . . . . 8 (𝑥 = 𝑦 → (((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞)) ↔ ((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) → 𝐶 ∈ (0[,]+∞))))
125121, 124, 22chvarfv 2238 . . . . . . 7 ((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) → 𝐶 ∈ (0[,]+∞))
126112, 117, 125chvarfv 2238 . . . . . 6 ((𝜑𝑦𝐴𝑗𝑦 / 𝑥𝐵) → 𝑗 / 𝑘𝐶 ∈ (0[,]+∞))
1271263adant1r 1173 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) ∧ 𝑦𝐴𝑗𝑦 / 𝑥𝐵) → 𝑗 / 𝑘𝐶 ∈ (0[,]+∞))
128 simpr 487 . . . . . . . . 9 ((∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞ ∧ 𝑦𝐴) → 𝑦𝐴)
129 simpl 485 . . . . . . . . 9 ((∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞ ∧ 𝑦𝐴) → ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞)
130 simpl 485 . . . . . . . . . 10 ((𝑦𝐴 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → 𝑦𝐴)
131 simpr 487 . . . . . . . . . 10 ((𝑦𝐴 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞)
132 nfcv 2977 . . . . . . . . . . . . . 14 𝑥𝑗 / 𝑘𝐶
13345, 132nfmpt 5155 . . . . . . . . . . . . 13 𝑥(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)
1342, 133nffv 6674 . . . . . . . . . . . 12 𝑥^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶))
135 nfcv 2977 . . . . . . . . . . . 12 𝑥+∞
136134, 135nfne 3119 . . . . . . . . . . 11 𝑥^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ≠ +∞
137 nfcv 2977 . . . . . . . . . . . . . . . 16 𝑗𝐶
138137, 110, 115cbvmpt 5159 . . . . . . . . . . . . . . 15 (𝑘𝑦 / 𝑥𝐵𝐶) = (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)
139138a1i 11 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑘𝑦 / 𝑥𝐵𝐶) = (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶))
14061, 139eqtrd 2856 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑘𝐵𝐶) = (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶))
141140fveq2d 6668 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (Σ^‘(𝑘𝐵𝐶)) = (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)))
142141neeq1d 3075 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((Σ^‘(𝑘𝐵𝐶)) ≠ +∞ ↔ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ≠ +∞))
143136, 142rspc 3610 . . . . . . . . . 10 (𝑦𝐴 → (∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞ → (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ≠ +∞))
144130, 131, 143sylc 65 . . . . . . . . 9 ((𝑦𝐴 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ≠ +∞)
145128, 129, 144syl2anc 586 . . . . . . . 8 ((∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞ ∧ 𝑦𝐴) → (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ≠ +∞)
146145neneqd 3021 . . . . . . 7 ((∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞ ∧ 𝑦𝐴) → ¬ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) = +∞)
147146adantll 712 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) ∧ 𝑦𝐴) → ¬ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) = +∞)
1481263expa 1114 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑗𝑦 / 𝑥𝐵) → 𝑗 / 𝑘𝐶 ∈ (0[,]+∞))
149 eqid 2821 . . . . . . . . 9 (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶) = (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)
150148, 149fmptd 6872 . . . . . . . 8 ((𝜑𝑦𝐴) → (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞))
151150adantlr 713 . . . . . . 7 (((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) ∧ 𝑦𝐴) → (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞))
152103, 151sge0repnf 42662 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) ∧ 𝑦𝐴) → ((Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ∈ ℝ ↔ ¬ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) = +∞))
153147, 152mpbird 259 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) ∧ 𝑦𝐴) → (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ∈ ℝ)
154137, 110, 115cbvmpt 5159 . . . . . . . . 9 (𝑘 𝑥𝐴 𝐵𝐶) = (𝑗 𝑥𝐴 𝐵𝑗 / 𝑘𝐶)
155105, 45, 51cbviun 4953 . . . . . . . . . 10 𝑥𝐴 𝐵 = 𝑦𝐴 𝑦 / 𝑥𝐵
156155mpteq1i 5148 . . . . . . . . 9 (𝑗 𝑥𝐴 𝐵𝑗 / 𝑘𝐶) = (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)
157154, 156eqtri 2844 . . . . . . . 8 (𝑘 𝑥𝐴 𝐵𝐶) = (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)
158157fveq2i 6667 . . . . . . 7 ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶))
159158, 29eqeltrrid 2918 . . . . . 6 (𝜑 → (Σ^‘(𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ∈ ℝ*)
160159adantr 483 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (Σ^‘(𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ∈ ℝ*)
16170, 134, 141cbvmpt 5159 . . . . . . . 8 (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) = (𝑦𝐴 ↦ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)))
162161fveq2i 6667 . . . . . . 7 ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) = (Σ^‘(𝑦𝐴 ↦ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶))))
16311, 66sge0cl 42657 . . . . . . . . 9 ((𝜑𝑥𝐴) → (Σ^‘(𝑘𝐵𝐶)) ∈ (0[,]+∞))
164163, 78fmptd 6872 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))):𝐴⟶(0[,]+∞))
16510, 164sge0xrcl 42661 . . . . . . 7 (𝜑 → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) ∈ ℝ*)
166162, 165eqeltrrid 2918 . . . . . 6 (𝜑 → (Σ^‘(𝑦𝐴 ↦ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)))) ∈ ℝ*)
167166adantr 483 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (Σ^‘(𝑦𝐴 ↦ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)))) ∈ ℝ*)
168 eliun 4915 . . . . . . . . . 10 (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵 ↔ ∃𝑦𝐴 𝑗𝑦 / 𝑥𝐵)
169168biimpi 218 . . . . . . . . 9 (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵 → ∃𝑦𝐴 𝑗𝑦 / 𝑥𝐵)
170169adantl 484 . . . . . . . 8 ((𝜑𝑗 𝑦𝐴 𝑦 / 𝑥𝐵) → ∃𝑦𝐴 𝑗𝑦 / 𝑥𝐵)
171 nfv 1911 . . . . . . . . . 10 𝑦𝜑
172 nfcv 2977 . . . . . . . . . . 11 𝑦𝑗
173 nfiu1 4945 . . . . . . . . . . 11 𝑦 𝑦𝐴 𝑦 / 𝑥𝐵
174172, 173nfel 2992 . . . . . . . . . 10 𝑦 𝑗 𝑦𝐴 𝑦 / 𝑥𝐵
175171, 174nfan 1896 . . . . . . . . 9 𝑦(𝜑𝑗 𝑦𝐴 𝑦 / 𝑥𝐵)
176 nfv 1911 . . . . . . . . 9 𝑦𝑗 / 𝑘𝐶 ∈ (0[,]+∞)
177148exp31 422 . . . . . . . . . 10 (𝜑 → (𝑦𝐴 → (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶 ∈ (0[,]+∞))))
178177adantr 483 . . . . . . . . 9 ((𝜑𝑗 𝑦𝐴 𝑦 / 𝑥𝐵) → (𝑦𝐴 → (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶 ∈ (0[,]+∞))))
179175, 176, 178rexlimd 3317 . . . . . . . 8 ((𝜑𝑗 𝑦𝐴 𝑦 / 𝑥𝐵) → (∃𝑦𝐴 𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶 ∈ (0[,]+∞)))
180170, 179mpd 15 . . . . . . 7 ((𝜑𝑗 𝑦𝐴 𝑦 / 𝑥𝐵) → 𝑗 / 𝑘𝐶 ∈ (0[,]+∞))
181 eqid 2821 . . . . . . 7 (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶) = (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)
182180, 181fmptd 6872 . . . . . 6 (𝜑 → (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶): 𝑦𝐴 𝑦 / 𝑥𝐵⟶(0[,]+∞))
183182adantr 483 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶): 𝑦𝐴 𝑦 / 𝑥𝐵⟶(0[,]+∞))
184155, 14eqeltrrid 2918 . . . . . 6 (𝜑 𝑦𝐴 𝑦 / 𝑥𝐵 ∈ V)
185184adantr 483 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → 𝑦𝐴 𝑦 / 𝑥𝐵 ∈ V)
18696, 103, 108, 127, 153, 160, 167, 183, 185sge0iunmptlemre 42691 . . . 4 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (Σ^‘(𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) = (Σ^‘(𝑦𝐴 ↦ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)))))
187158a1i 11 . . . 4 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)))
188162a1i 11 . . . 4 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) = (Σ^‘(𝑦𝐴 ↦ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)))))
189186, 187, 1883eqtr4d 2866 . . 3 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
19089, 95, 189syl2anc 586 . 2 ((𝜑 ∧ ¬ ∃𝑥𝐴^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
19188, 190pm2.61dan 811 1 (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  Vcvv 3494  csb 3882  wss 3935   ciun 4911  Disj wdisj 5023   class class class wbr 5058  cmpt 5138  ran crn 5550  wf 6345  cfv 6349  (class class class)co 7150  cr 10530  0cc0 10531  +∞cpnf 10666  *cxr 10668  cle 10670  [,]cicc 12735  Σ^csumge0 42638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-ac2 9879  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-disj 5024  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-oi 8968  df-card 9362  df-acn 9365  df-ac 9536  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-xadd 12502  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-sumge0 42639
This theorem is referenced by:  sge0iun  42695  sge0xp  42705
  Copyright terms: Public domain W3C validator