Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0iunmpt Structured version   Visualization version   GIF version

Theorem sge0iunmpt 39942
Description: Sum of nonnegative extended reals over a disjoint indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0iunmpt.a (𝜑𝐴𝑉)
sge0iunmpt.b ((𝜑𝑥𝐴) → 𝐵𝑊)
sge0iunmpt.dj (𝜑Disj 𝑥𝐴 𝐵)
sge0iunmpt.c ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
Assertion
Ref Expression
sge0iunmpt (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
Distinct variable groups:   𝐴,𝑘,𝑥   𝐵,𝑘   𝑥,𝐶   𝑥,𝑊   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑘)   𝑉(𝑥,𝑘)   𝑊(𝑘)

Proof of Theorem sge0iunmpt
Dummy variables 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1840 . . . 4 𝑥𝜑
2 nfcv 2761 . . . . . 6 𝑥Σ^
3 nfiu1 4516 . . . . . . 7 𝑥 𝑥𝐴 𝐵
4 nfcv 2761 . . . . . . 7 𝑥𝐶
53, 4nfmpt 4706 . . . . . 6 𝑥(𝑘 𝑥𝐴 𝐵𝐶)
62, 5nffv 6155 . . . . 5 𝑥^‘(𝑘 𝑥𝐴 𝐵𝐶))
7 nfmpt1 4707 . . . . . 6 𝑥(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))
82, 7nffv 6155 . . . . 5 𝑥^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))
96, 8nfeq 2772 . . . 4 𝑥^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))
10 sge0iunmpt.a . . . . . . . . . 10 (𝜑𝐴𝑉)
11 sge0iunmpt.b . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵𝑊)
1211ralrimiva 2960 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐴 𝐵𝑊)
13 iunexg 7089 . . . . . . . . . 10 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵𝑊) → 𝑥𝐴 𝐵 ∈ V)
1410, 12, 13syl2anc 692 . . . . . . . . 9 (𝜑 𝑥𝐴 𝐵 ∈ V)
15 eliun 4490 . . . . . . . . . . . . 13 (𝑘 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑘𝐵)
1615biimpi 206 . . . . . . . . . . . 12 (𝑘 𝑥𝐴 𝐵 → ∃𝑥𝐴 𝑘𝐵)
1716adantl 482 . . . . . . . . . . 11 ((𝜑𝑘 𝑥𝐴 𝐵) → ∃𝑥𝐴 𝑘𝐵)
18 nfcv 2761 . . . . . . . . . . . . . 14 𝑥𝑘
1918, 3nfel 2773 . . . . . . . . . . . . 13 𝑥 𝑘 𝑥𝐴 𝐵
201, 19nfan 1825 . . . . . . . . . . . 12 𝑥(𝜑𝑘 𝑥𝐴 𝐵)
214nfel1 2775 . . . . . . . . . . . 12 𝑥 𝐶 ∈ (0[,]+∞)
22 sge0iunmpt.c . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
23223exp 1261 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝐴 → (𝑘𝐵𝐶 ∈ (0[,]+∞))))
2423adantr 481 . . . . . . . . . . . 12 ((𝜑𝑘 𝑥𝐴 𝐵) → (𝑥𝐴 → (𝑘𝐵𝐶 ∈ (0[,]+∞))))
2520, 21, 24rexlimd 3019 . . . . . . . . . . 11 ((𝜑𝑘 𝑥𝐴 𝐵) → (∃𝑥𝐴 𝑘𝐵𝐶 ∈ (0[,]+∞)))
2617, 25mpd 15 . . . . . . . . . 10 ((𝜑𝑘 𝑥𝐴 𝐵) → 𝐶 ∈ (0[,]+∞))
27 eqid 2621 . . . . . . . . . 10 (𝑘 𝑥𝐴 𝐵𝐶) = (𝑘 𝑥𝐴 𝐵𝐶)
2826, 27fmptd 6340 . . . . . . . . 9 (𝜑 → (𝑘 𝑥𝐴 𝐵𝐶): 𝑥𝐴 𝐵⟶(0[,]+∞))
2914, 28sge0xrcl 39909 . . . . . . . 8 (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) ∈ ℝ*)
30293ad2ant1 1080 . . . . . . 7 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) ∈ ℝ*)
31 id 22 . . . . . . . . . . 11 ((Σ^‘(𝑘𝐵𝐶)) = +∞ → (Σ^‘(𝑘𝐵𝐶)) = +∞)
3231eqcomd 2627 . . . . . . . . . 10 ((Σ^‘(𝑘𝐵𝐶)) = +∞ → +∞ = (Σ^‘(𝑘𝐵𝐶)))
3332adantl 482 . . . . . . . . 9 ((𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → +∞ = (Σ^‘(𝑘𝐵𝐶)))
34333adant1 1077 . . . . . . . 8 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → +∞ = (Σ^‘(𝑘𝐵𝐶)))
3514adantr 481 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥𝐴 𝐵 ∈ V)
3626adantlr 750 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑘 𝑥𝐴 𝐵) → 𝐶 ∈ (0[,]+∞))
37 ssiun2 4529 . . . . . . . . . . 11 (𝑥𝐴𝐵 𝑥𝐴 𝐵)
3837adantl 482 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐵 𝑥𝐴 𝐵)
3935, 36, 38sge0lessmpt 39923 . . . . . . . . 9 ((𝜑𝑥𝐴) → (Σ^‘(𝑘𝐵𝐶)) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)))
40393adant3 1079 . . . . . . . 8 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑘𝐵𝐶)) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)))
4134, 40eqbrtrd 4635 . . . . . . 7 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → +∞ ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)))
4230, 41xrgepnfd 39011 . . . . . 6 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = +∞)
43103ad2ant1 1080 . . . . . . 7 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → 𝐴𝑉)
44 nfv 1840 . . . . . . . . . . . . 13 𝑥(𝜑𝑦𝐴)
45 nfcsb1v 3530 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥𝐵
46 nfcsb1v 3530 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥𝑊
4745, 46nfel 2773 . . . . . . . . . . . . 13 𝑥𝑦 / 𝑥𝐵𝑦 / 𝑥𝑊
4844, 47nfim 1822 . . . . . . . . . . . 12 𝑥((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑦 / 𝑥𝑊)
49 eleq1 2686 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
5049anbi2d 739 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝜑𝑥𝐴) ↔ (𝜑𝑦𝐴)))
51 csbeq1a 3523 . . . . . . . . . . . . . 14 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
52 csbeq1a 3523 . . . . . . . . . . . . . 14 (𝑥 = 𝑦𝑊 = 𝑦 / 𝑥𝑊)
5351, 52eleq12d 2692 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝐵𝑊𝑦 / 𝑥𝐵𝑦 / 𝑥𝑊))
5450, 53imbi12d 334 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → 𝐵𝑊) ↔ ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑦 / 𝑥𝑊)))
5548, 54, 11chvar 2261 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑦 / 𝑥𝑊)
5655adantlr 750 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑦𝐴) → 𝑦 / 𝑥𝐵𝑦 / 𝑥𝑊)
5745, 4nfmpt 4706 . . . . . . . . . . . . . 14 𝑥(𝑘𝑦 / 𝑥𝐵𝐶)
58 nfcv 2761 . . . . . . . . . . . . . 14 𝑥(0[,]+∞)
5957, 45, 58nff 5998 . . . . . . . . . . . . 13 𝑥(𝑘𝑦 / 𝑥𝐵𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞)
6044, 59nfim 1822 . . . . . . . . . . . 12 𝑥((𝜑𝑦𝐴) → (𝑘𝑦 / 𝑥𝐵𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞))
6151mpteq1d 4698 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑘𝐵𝐶) = (𝑘𝑦 / 𝑥𝐵𝐶))
6261, 51feq12d 5990 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝑘𝐵𝐶):𝐵⟶(0[,]+∞) ↔ (𝑘𝑦 / 𝑥𝐵𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞)))
6350, 62imbi12d 334 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → (𝑘𝐵𝐶):𝐵⟶(0[,]+∞)) ↔ ((𝜑𝑦𝐴) → (𝑘𝑦 / 𝑥𝐵𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞))))
6423imp31 448 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
65 eqid 2621 . . . . . . . . . . . . 13 (𝑘𝐵𝐶) = (𝑘𝐵𝐶)
6664, 65fmptd 6340 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝑘𝐵𝐶):𝐵⟶(0[,]+∞))
6760, 63, 66chvar 2261 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (𝑘𝑦 / 𝑥𝐵𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞))
6867adantlr 750 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑦𝐴) → (𝑘𝑦 / 𝑥𝐵𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞))
6956, 68sge0cl 39905 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑦𝐴) → (Σ^‘(𝑘𝑦 / 𝑥𝐵𝐶)) ∈ (0[,]+∞))
70 nfcv 2761 . . . . . . . . . 10 𝑦^‘(𝑘𝐵𝐶))
712, 57nffv 6155 . . . . . . . . . 10 𝑥^‘(𝑘𝑦 / 𝑥𝐵𝐶))
7261fveq2d 6152 . . . . . . . . . 10 (𝑥 = 𝑦 → (Σ^‘(𝑘𝐵𝐶)) = (Σ^‘(𝑘𝑦 / 𝑥𝐵𝐶)))
7370, 71, 72cbvmpt 4709 . . . . . . . . 9 (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) = (𝑦𝐴 ↦ (Σ^‘(𝑘𝑦 / 𝑥𝐵𝐶)))
7469, 73fmptd 6340 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))):𝐴⟶(0[,]+∞))
75743adant3 1079 . . . . . . 7 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))):𝐴⟶(0[,]+∞))
76 id 22 . . . . . . . . . . 11 (𝑥𝐴𝑥𝐴)
77 fvex 6158 . . . . . . . . . . . 12 ^‘(𝑘𝐵𝐶)) ∈ V
7877a1i 11 . . . . . . . . . . 11 (𝑥𝐴 → (Σ^‘(𝑘𝐵𝐶)) ∈ V)
79 eqid 2621 . . . . . . . . . . . 12 (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) = (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))
8079elrnmpt1 5334 . . . . . . . . . . 11 ((𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) ∈ V) → (Σ^‘(𝑘𝐵𝐶)) ∈ ran (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))
8176, 78, 80syl2anc 692 . . . . . . . . . 10 (𝑥𝐴 → (Σ^‘(𝑘𝐵𝐶)) ∈ ran (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))
8281adantr 481 . . . . . . . . 9 ((𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑘𝐵𝐶)) ∈ ran (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))
8333, 82eqeltrd 2698 . . . . . . . 8 ((𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → +∞ ∈ ran (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))
84833adant1 1077 . . . . . . 7 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → +∞ ∈ ran (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))
8543, 75, 84sge0pnfval 39897 . . . . . 6 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) = +∞)
8642, 85eqtr4d 2658 . . . . 5 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
87863exp 1261 . . . 4 (𝜑 → (𝑥𝐴 → ((Σ^‘(𝑘𝐵𝐶)) = +∞ → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))))
881, 9, 87rexlimd 3019 . . 3 (𝜑 → (∃𝑥𝐴^‘(𝑘𝐵𝐶)) = +∞ → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))))
8988imp 445 . 2 ((𝜑 ∧ ∃𝑥𝐴^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
90 simpl 473 . . 3 ((𝜑 ∧ ¬ ∃𝑥𝐴^‘(𝑘𝐵𝐶)) = +∞) → 𝜑)
91 ralnex 2986 . . . . 5 (∀𝑥𝐴 ¬ (Σ^‘(𝑘𝐵𝐶)) = +∞ ↔ ¬ ∃𝑥𝐴^‘(𝑘𝐵𝐶)) = +∞)
92 df-ne 2791 . . . . . . 7 ((Σ^‘(𝑘𝐵𝐶)) ≠ +∞ ↔ ¬ (Σ^‘(𝑘𝐵𝐶)) = +∞)
9392bicomi 214 . . . . . 6 (¬ (Σ^‘(𝑘𝐵𝐶)) = +∞ ↔ (Σ^‘(𝑘𝐵𝐶)) ≠ +∞)
9493ralbii 2974 . . . . 5 (∀𝑥𝐴 ¬ (Σ^‘(𝑘𝐵𝐶)) = +∞ ↔ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞)
9591, 94sylbb1 227 . . . 4 (¬ ∃𝑥𝐴^‘(𝑘𝐵𝐶)) = +∞ → ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞)
9695adantl 482 . . 3 ((𝜑 ∧ ¬ ∃𝑥𝐴^‘(𝑘𝐵𝐶)) = +∞) → ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞)
9710adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → 𝐴𝑉)
98 nfcv 2761 . . . . . . . . 9 𝑥𝑊
9945, 98nfel 2773 . . . . . . . 8 𝑥𝑦 / 𝑥𝐵𝑊
10044, 99nfim 1822 . . . . . . 7 𝑥((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑊)
10151eleq1d 2683 . . . . . . . 8 (𝑥 = 𝑦 → (𝐵𝑊𝑦 / 𝑥𝐵𝑊))
10250, 101imbi12d 334 . . . . . . 7 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → 𝐵𝑊) ↔ ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑊)))
103100, 102, 11chvar 2261 . . . . . 6 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑊)
104103adantlr 750 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) ∧ 𝑦𝐴) → 𝑦 / 𝑥𝐵𝑊)
105 sge0iunmpt.dj . . . . . . 7 (𝜑Disj 𝑥𝐴 𝐵)
106 nfcv 2761 . . . . . . . 8 𝑦𝐵
107106, 45, 51cbvdisj 4593 . . . . . . 7 (Disj 𝑥𝐴 𝐵Disj 𝑦𝐴 𝑦 / 𝑥𝐵)
108105, 107sylib 208 . . . . . 6 (𝜑Disj 𝑦𝐴 𝑦 / 𝑥𝐵)
109108adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → Disj 𝑦𝐴 𝑦 / 𝑥𝐵)
110 nfv 1840 . . . . . . . 8 𝑘(𝜑𝑦𝐴𝑗𝑦 / 𝑥𝐵)
111 nfcsb1v 3530 . . . . . . . . 9 𝑘𝑗 / 𝑘𝐶
112111nfel1 2775 . . . . . . . 8 𝑘𝑗 / 𝑘𝐶 ∈ (0[,]+∞)
113110, 112nfim 1822 . . . . . . 7 𝑘((𝜑𝑦𝐴𝑗𝑦 / 𝑥𝐵) → 𝑗 / 𝑘𝐶 ∈ (0[,]+∞))
114 eleq1 2686 . . . . . . . . 9 (𝑘 = 𝑗 → (𝑘𝑦 / 𝑥𝐵𝑗𝑦 / 𝑥𝐵))
1151143anbi3d 1402 . . . . . . . 8 (𝑘 = 𝑗 → ((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) ↔ (𝜑𝑦𝐴𝑗𝑦 / 𝑥𝐵)))
116 csbeq1a 3523 . . . . . . . . 9 (𝑘 = 𝑗𝐶 = 𝑗 / 𝑘𝐶)
117116eleq1d 2683 . . . . . . . 8 (𝑘 = 𝑗 → (𝐶 ∈ (0[,]+∞) ↔ 𝑗 / 𝑘𝐶 ∈ (0[,]+∞)))
118115, 117imbi12d 334 . . . . . . 7 (𝑘 = 𝑗 → (((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) → 𝐶 ∈ (0[,]+∞)) ↔ ((𝜑𝑦𝐴𝑗𝑦 / 𝑥𝐵) → 𝑗 / 𝑘𝐶 ∈ (0[,]+∞))))
119 nfv 1840 . . . . . . . . . 10 𝑥 𝑦𝐴
12018, 45nfel 2773 . . . . . . . . . 10 𝑥 𝑘𝑦 / 𝑥𝐵
1211, 119, 120nf3an 1828 . . . . . . . . 9 𝑥(𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵)
122121, 21nfim 1822 . . . . . . . 8 𝑥((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) → 𝐶 ∈ (0[,]+∞))
12351eleq2d 2684 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑘𝐵𝑘𝑦 / 𝑥𝐵))
12449, 1233anbi23d 1399 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝜑𝑥𝐴𝑘𝐵) ↔ (𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵)))
125124imbi1d 331 . . . . . . . 8 (𝑥 = 𝑦 → (((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞)) ↔ ((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) → 𝐶 ∈ (0[,]+∞))))
126122, 125, 22chvar 2261 . . . . . . 7 ((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) → 𝐶 ∈ (0[,]+∞))
127113, 118, 126chvar 2261 . . . . . 6 ((𝜑𝑦𝐴𝑗𝑦 / 𝑥𝐵) → 𝑗 / 𝑘𝐶 ∈ (0[,]+∞))
1281273adant1r 1316 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) ∧ 𝑦𝐴𝑗𝑦 / 𝑥𝐵) → 𝑗 / 𝑘𝐶 ∈ (0[,]+∞))
129 simpr 477 . . . . . . . . 9 ((∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞ ∧ 𝑦𝐴) → 𝑦𝐴)
130 simpl 473 . . . . . . . . 9 ((∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞ ∧ 𝑦𝐴) → ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞)
131 simpl 473 . . . . . . . . . 10 ((𝑦𝐴 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → 𝑦𝐴)
132 simpr 477 . . . . . . . . . 10 ((𝑦𝐴 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞)
133 nfcv 2761 . . . . . . . . . . . . . 14 𝑥𝑗 / 𝑘𝐶
13445, 133nfmpt 4706 . . . . . . . . . . . . 13 𝑥(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)
1352, 134nffv 6155 . . . . . . . . . . . 12 𝑥^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶))
136 nfcv 2761 . . . . . . . . . . . 12 𝑥+∞
137135, 136nfne 2890 . . . . . . . . . . 11 𝑥^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ≠ +∞
138 nfcv 2761 . . . . . . . . . . . . . . . 16 𝑗𝐶
139138, 111, 116cbvmpt 4709 . . . . . . . . . . . . . . 15 (𝑘𝑦 / 𝑥𝐵𝐶) = (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)
140139a1i 11 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑘𝑦 / 𝑥𝐵𝐶) = (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶))
14161, 140eqtrd 2655 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑘𝐵𝐶) = (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶))
142141fveq2d 6152 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (Σ^‘(𝑘𝐵𝐶)) = (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)))
143142neeq1d 2849 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((Σ^‘(𝑘𝐵𝐶)) ≠ +∞ ↔ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ≠ +∞))
144137, 143rspc 3289 . . . . . . . . . 10 (𝑦𝐴 → (∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞ → (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ≠ +∞))
145131, 132, 144sylc 65 . . . . . . . . 9 ((𝑦𝐴 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ≠ +∞)
146129, 130, 145syl2anc 692 . . . . . . . 8 ((∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞ ∧ 𝑦𝐴) → (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ≠ +∞)
147146neneqd 2795 . . . . . . 7 ((∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞ ∧ 𝑦𝐴) → ¬ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) = +∞)
148147adantll 749 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) ∧ 𝑦𝐴) → ¬ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) = +∞)
1491273expa 1262 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑗𝑦 / 𝑥𝐵) → 𝑗 / 𝑘𝐶 ∈ (0[,]+∞))
150 eqid 2621 . . . . . . . . 9 (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶) = (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)
151149, 150fmptd 6340 . . . . . . . 8 ((𝜑𝑦𝐴) → (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞))
152151adantlr 750 . . . . . . 7 (((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) ∧ 𝑦𝐴) → (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞))
153104, 152sge0repnf 39910 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) ∧ 𝑦𝐴) → ((Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ∈ ℝ ↔ ¬ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) = +∞))
154148, 153mpbird 247 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) ∧ 𝑦𝐴) → (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ∈ ℝ)
155138, 111, 116cbvmpt 4709 . . . . . . . . 9 (𝑘 𝑥𝐴 𝐵𝐶) = (𝑗 𝑥𝐴 𝐵𝑗 / 𝑘𝐶)
156106, 45, 51cbviun 4523 . . . . . . . . . 10 𝑥𝐴 𝐵 = 𝑦𝐴 𝑦 / 𝑥𝐵
157156mpteq1i 4699 . . . . . . . . 9 (𝑗 𝑥𝐴 𝐵𝑗 / 𝑘𝐶) = (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)
158155, 157eqtri 2643 . . . . . . . 8 (𝑘 𝑥𝐴 𝐵𝐶) = (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)
159158fveq2i 6151 . . . . . . 7 ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶))
160159, 29syl5eqelr 2703 . . . . . 6 (𝜑 → (Σ^‘(𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ∈ ℝ*)
161160adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (Σ^‘(𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ∈ ℝ*)
16270, 135, 142cbvmpt 4709 . . . . . . . 8 (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) = (𝑦𝐴 ↦ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)))
163162fveq2i 6151 . . . . . . 7 ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) = (Σ^‘(𝑦𝐴 ↦ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶))))
16411, 66sge0cl 39905 . . . . . . . . 9 ((𝜑𝑥𝐴) → (Σ^‘(𝑘𝐵𝐶)) ∈ (0[,]+∞))
165164, 79fmptd 6340 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))):𝐴⟶(0[,]+∞))
16610, 165sge0xrcl 39909 . . . . . . 7 (𝜑 → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) ∈ ℝ*)
167163, 166syl5eqelr 2703 . . . . . 6 (𝜑 → (Σ^‘(𝑦𝐴 ↦ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)))) ∈ ℝ*)
168167adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (Σ^‘(𝑦𝐴 ↦ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)))) ∈ ℝ*)
169 eliun 4490 . . . . . . . . . 10 (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵 ↔ ∃𝑦𝐴 𝑗𝑦 / 𝑥𝐵)
170169biimpi 206 . . . . . . . . 9 (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵 → ∃𝑦𝐴 𝑗𝑦 / 𝑥𝐵)
171170adantl 482 . . . . . . . 8 ((𝜑𝑗 𝑦𝐴 𝑦 / 𝑥𝐵) → ∃𝑦𝐴 𝑗𝑦 / 𝑥𝐵)
172 nfv 1840 . . . . . . . . . 10 𝑦𝜑
173 nfcv 2761 . . . . . . . . . . 11 𝑦𝑗
174 nfiu1 4516 . . . . . . . . . . 11 𝑦 𝑦𝐴 𝑦 / 𝑥𝐵
175173, 174nfel 2773 . . . . . . . . . 10 𝑦 𝑗 𝑦𝐴 𝑦 / 𝑥𝐵
176172, 175nfan 1825 . . . . . . . . 9 𝑦(𝜑𝑗 𝑦𝐴 𝑦 / 𝑥𝐵)
177 nfv 1840 . . . . . . . . 9 𝑦𝑗 / 𝑘𝐶 ∈ (0[,]+∞)
178149exp31 629 . . . . . . . . . 10 (𝜑 → (𝑦𝐴 → (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶 ∈ (0[,]+∞))))
179178adantr 481 . . . . . . . . 9 ((𝜑𝑗 𝑦𝐴 𝑦 / 𝑥𝐵) → (𝑦𝐴 → (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶 ∈ (0[,]+∞))))
180176, 177, 179rexlimd 3019 . . . . . . . 8 ((𝜑𝑗 𝑦𝐴 𝑦 / 𝑥𝐵) → (∃𝑦𝐴 𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶 ∈ (0[,]+∞)))
181171, 180mpd 15 . . . . . . 7 ((𝜑𝑗 𝑦𝐴 𝑦 / 𝑥𝐵) → 𝑗 / 𝑘𝐶 ∈ (0[,]+∞))
182 eqid 2621 . . . . . . 7 (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶) = (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)
183181, 182fmptd 6340 . . . . . 6 (𝜑 → (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶): 𝑦𝐴 𝑦 / 𝑥𝐵⟶(0[,]+∞))
184183adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶): 𝑦𝐴 𝑦 / 𝑥𝐵⟶(0[,]+∞))
185156, 14syl5eqelr 2703 . . . . . 6 (𝜑 𝑦𝐴 𝑦 / 𝑥𝐵 ∈ V)
186185adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → 𝑦𝐴 𝑦 / 𝑥𝐵 ∈ V)
18797, 104, 109, 128, 154, 161, 168, 184, 186sge0iunmptlemre 39939 . . . 4 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (Σ^‘(𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) = (Σ^‘(𝑦𝐴 ↦ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)))))
188159a1i 11 . . . 4 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)))
189163a1i 11 . . . 4 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) = (Σ^‘(𝑦𝐴 ↦ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)))))
190187, 188, 1893eqtr4d 2665 . . 3 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
19190, 96, 190syl2anc 692 . 2 ((𝜑 ∧ ¬ ∃𝑥𝐴^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
19289, 191pm2.61dan 831 1 (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  Vcvv 3186  csb 3514  wss 3555   ciun 4485  Disj wdisj 4583   class class class wbr 4613  cmpt 4673  ran crn 5075  wf 5843  cfv 5847  (class class class)co 6604  cr 9879  0cc0 9880  +∞cpnf 10015  *cxr 10017  cle 10019  [,]cicc 12120  Σ^csumge0 39886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-ac2 9229  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-disj 4584  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-oi 8359  df-card 8709  df-acn 8712  df-ac 8883  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-xadd 11891  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-sumge0 39887
This theorem is referenced by:  sge0iun  39943  sge0xp  39953
  Copyright terms: Public domain W3C validator