Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0iunmptlemre Structured version   Visualization version   GIF version

Theorem sge0iunmptlemre 42696
Description: Sum of nonnegative extended reals over a disjoint indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0iunmptlemre.a (𝜑𝐴𝑉)
sge0iunmptlemre.b ((𝜑𝑥𝐴) → 𝐵𝑊)
sge0iunmptlemre.dj (𝜑Disj 𝑥𝐴 𝐵)
sge0iunmptlemre.c ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
sge0iunmptlemre.re ((𝜑𝑥𝐴) → (Σ^‘(𝑘𝐵𝐶)) ∈ ℝ)
sge0iunmptlemre.sxr (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) ∈ ℝ*)
sge0iunmptlemre.ssxr (𝜑 → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) ∈ ℝ*)
sge0iunmptlemre.f (𝜑 → (𝑘 𝑥𝐴 𝐵𝐶): 𝑥𝐴 𝐵⟶(0[,]+∞))
sge0iunmptlemre.iue (𝜑 𝑥𝐴 𝐵 ∈ V)
Assertion
Ref Expression
sge0iunmptlemre (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
Distinct variable groups:   𝐴,𝑘,𝑥   𝐵,𝑘   𝑥,𝐶   𝑥,𝑊   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑘)   𝑉(𝑥,𝑘)   𝑊(𝑘)

Proof of Theorem sge0iunmptlemre
Dummy variables 𝑏 𝑝 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0iunmptlemre.sxr . 2 (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) ∈ ℝ*)
2 sge0iunmptlemre.ssxr . 2 (𝜑 → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) ∈ ℝ*)
3 elpwinss 41309 . . . . . . . . . 10 (𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) → 𝑦 𝑥𝐴 𝐵)
43resmptd 5907 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) → ((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦) = (𝑘𝑦𝐶))
54fveq2d 6673 . . . . . . . 8 (𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) → (Σ^‘((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦)) = (Σ^‘(𝑘𝑦𝐶)))
65adantl 484 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦)) = (Σ^‘(𝑘𝑦𝐶)))
7 elinel2 4172 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) → 𝑦 ∈ Fin)
87adantl 484 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → 𝑦 ∈ Fin)
93sselda 3966 . . . . . . . . . . 11 ((𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) ∧ 𝑘𝑦) → 𝑘 𝑥𝐴 𝐵)
10 eliun 4922 . . . . . . . . . . 11 (𝑘 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑘𝐵)
119, 10sylib 220 . . . . . . . . . 10 ((𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) ∧ 𝑘𝑦) → ∃𝑥𝐴 𝑘𝐵)
1211adantll 712 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) ∧ 𝑘𝑦) → ∃𝑥𝐴 𝑘𝐵)
13 nfv 1911 . . . . . . . . . . . 12 𝑥𝜑
14 nfcv 2977 . . . . . . . . . . . . 13 𝑥𝑦
15 nfiu1 4952 . . . . . . . . . . . . . . 15 𝑥 𝑥𝐴 𝐵
1615nfpw 4559 . . . . . . . . . . . . . 14 𝑥𝒫 𝑥𝐴 𝐵
17 nfcv 2977 . . . . . . . . . . . . . 14 𝑥Fin
1816, 17nfin 4192 . . . . . . . . . . . . 13 𝑥(𝒫 𝑥𝐴 𝐵 ∩ Fin)
1914, 18nfel 2992 . . . . . . . . . . . 12 𝑥 𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)
2013, 19nfan 1896 . . . . . . . . . . 11 𝑥(𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin))
21 nfv 1911 . . . . . . . . . . 11 𝑥 𝑘𝑦
2220, 21nfan 1896 . . . . . . . . . 10 𝑥((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) ∧ 𝑘𝑦)
23 nfv 1911 . . . . . . . . . 10 𝑥 𝐶 ∈ (0[,)+∞)
24 simp3 1134 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴𝑘𝐵) → 𝑘𝐵)
25 sge0iunmptlemre.c . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
26 eqid 2821 . . . . . . . . . . . . . . . 16 (𝑘𝐵𝐶) = (𝑘𝐵𝐶)
2726fvmpt2 6778 . . . . . . . . . . . . . . 15 ((𝑘𝐵𝐶 ∈ (0[,]+∞)) → ((𝑘𝐵𝐶)‘𝑘) = 𝐶)
2824, 25, 27syl2anc 586 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴𝑘𝐵) → ((𝑘𝐵𝐶)‘𝑘) = 𝐶)
2928eqcomd 2827 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 = ((𝑘𝐵𝐶)‘𝑘))
30253expa 1114 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
3130, 26fmptd 6877 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (𝑘𝐵𝐶):𝐵⟶(0[,]+∞))
32313adant3 1128 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴𝑘𝐵) → (𝑘𝐵𝐶):𝐵⟶(0[,]+∞))
33 sge0iunmptlemre.b . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝐵𝑊)
34333adant3 1128 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴𝑘𝐵) → 𝐵𝑊)
35 sge0iunmptlemre.re . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (Σ^‘(𝑘𝐵𝐶)) ∈ ℝ)
36353adant3 1128 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴𝑘𝐵) → (Σ^‘(𝑘𝐵𝐶)) ∈ ℝ)
3734, 32, 36sge0rern 42669 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴𝑘𝐵) → ¬ +∞ ∈ ran (𝑘𝐵𝐶))
3832, 37fge0iccico 42651 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴𝑘𝐵) → (𝑘𝐵𝐶):𝐵⟶(0[,)+∞))
3938, 24ffvelrnd 6851 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴𝑘𝐵) → ((𝑘𝐵𝐶)‘𝑘) ∈ (0[,)+∞))
4029, 39eqeltrd 2913 . . . . . . . . . . . 12 ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,)+∞))
41403exp 1115 . . . . . . . . . . 11 (𝜑 → (𝑥𝐴 → (𝑘𝐵𝐶 ∈ (0[,)+∞))))
4241ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) ∧ 𝑘𝑦) → (𝑥𝐴 → (𝑘𝐵𝐶 ∈ (0[,)+∞))))
4322, 23, 42rexlimd 3317 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) ∧ 𝑘𝑦) → (∃𝑥𝐴 𝑘𝐵𝐶 ∈ (0[,)+∞)))
4412, 43mpd 15 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) ∧ 𝑘𝑦) → 𝐶 ∈ (0[,)+∞))
458, 44sge0fsummpt 42671 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑘𝑦𝐶)) = Σ𝑘𝑦 𝐶)
46 sseqin2 4191 . . . . . . . . . . . . . 14 (𝑦 𝑥𝐴 𝐵 ↔ ( 𝑥𝐴 𝐵𝑦) = 𝑦)
4746biimpi 218 . . . . . . . . . . . . 13 (𝑦 𝑥𝐴 𝐵 → ( 𝑥𝐴 𝐵𝑦) = 𝑦)
4847eqcomd 2827 . . . . . . . . . . . 12 (𝑦 𝑥𝐴 𝐵𝑦 = ( 𝑥𝐴 𝐵𝑦))
49 iunin1 4993 . . . . . . . . . . . . 13 𝑥𝐴 (𝐵𝑦) = ( 𝑥𝐴 𝐵𝑦)
5049a1i 11 . . . . . . . . . . . 12 (𝑦 𝑥𝐴 𝐵 𝑥𝐴 (𝐵𝑦) = ( 𝑥𝐴 𝐵𝑦))
5148, 50eqtr4d 2859 . . . . . . . . . . 11 (𝑦 𝑥𝐴 𝐵𝑦 = 𝑥𝐴 (𝐵𝑦))
523, 51syl 17 . . . . . . . . . 10 (𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) → 𝑦 = 𝑥𝐴 (𝐵𝑦))
5352sumeq1d 15057 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) → Σ𝑘𝑦 𝐶 = Σ𝑘 𝑥𝐴 (𝐵𝑦)𝐶)
5453adantl 484 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → Σ𝑘𝑦 𝐶 = Σ𝑘 𝑥𝐴 (𝐵𝑦)𝐶)
55 simpl 485 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → 𝜑)
5633adantlr 713 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ 𝑥𝐴) → 𝐵𝑊)
57 sge0iunmptlemre.dj . . . . . . . . . . 11 (𝜑Disj 𝑥𝐴 𝐵)
5857adantr 483 . . . . . . . . . 10 ((𝜑𝑦 ∈ Fin) → Disj 𝑥𝐴 𝐵)
59 rge0ssre 12843 . . . . . . . . . . . . 13 (0[,)+∞) ⊆ ℝ
60 ax-resscn 10593 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
6159, 60sstri 3975 . . . . . . . . . . . 12 (0[,)+∞) ⊆ ℂ
6261, 40sseldi 3964 . . . . . . . . . . 11 ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ)
63623adant1r 1173 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ 𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ)
64 simpr 487 . . . . . . . . . 10 ((𝜑𝑦 ∈ Fin) → 𝑦 ∈ Fin)
6556, 58, 63, 64fsumiunss 41854 . . . . . . . . 9 ((𝜑𝑦 ∈ Fin) → Σ𝑘 𝑥𝐴 (𝐵𝑦)𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶)
6655, 8, 65syl2anc 586 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → Σ𝑘 𝑥𝐴 (𝐵𝑦)𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶)
6754, 66eqtrd 2856 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → Σ𝑘𝑦 𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶)
686, 45, 673eqtrd 2860 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦)) = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶)
6956, 58, 64disjinfi 41452 . . . . . . . . . 10 ((𝜑𝑦 ∈ Fin) → {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ∈ Fin)
70 id 22 . . . . . . . . . . . . 13 (𝑦 ∈ Fin → 𝑦 ∈ Fin)
71 inss2 4205 . . . . . . . . . . . . . 14 (𝑤 / 𝑥𝐵𝑦) ⊆ 𝑦
7271a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ Fin → (𝑤 / 𝑥𝐵𝑦) ⊆ 𝑦)
73 ssfi 8737 . . . . . . . . . . . . 13 ((𝑦 ∈ Fin ∧ (𝑤 / 𝑥𝐵𝑦) ⊆ 𝑦) → (𝑤 / 𝑥𝐵𝑦) ∈ Fin)
7470, 72, 73syl2anc 586 . . . . . . . . . . . 12 (𝑦 ∈ Fin → (𝑤 / 𝑥𝐵𝑦) ∈ Fin)
7574ad2antlr 725 . . . . . . . . . . 11 (((𝜑𝑦 ∈ Fin) ∧ 𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) → (𝑤 / 𝑥𝐵𝑦) ∈ Fin)
76 simpll 765 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝜑)
77 elrabi 3674 . . . . . . . . . . . . . 14 (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} → 𝑤𝐴)
7877ad2antlr 725 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝑤𝐴)
79 elinel1 4171 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) → 𝑘𝑤 / 𝑥𝐵)
8079adantl 484 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝑘𝑤 / 𝑥𝐵)
81 nfv 1911 . . . . . . . . . . . . . . . 16 𝑥 𝑤𝐴
82 nfcv 2977 . . . . . . . . . . . . . . . . 17 𝑥𝑘
83 nfcsb1v 3906 . . . . . . . . . . . . . . . . 17 𝑥𝑤 / 𝑥𝐵
8482, 83nfel 2992 . . . . . . . . . . . . . . . 16 𝑥 𝑘𝑤 / 𝑥𝐵
8513, 81, 84nf3an 1898 . . . . . . . . . . . . . . 15 𝑥(𝜑𝑤𝐴𝑘𝑤 / 𝑥𝐵)
8685, 23nfim 1893 . . . . . . . . . . . . . 14 𝑥((𝜑𝑤𝐴𝑘𝑤 / 𝑥𝐵) → 𝐶 ∈ (0[,)+∞))
87 eleq1w 2895 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → (𝑥𝐴𝑤𝐴))
88 csbeq1a 3896 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑤𝐵 = 𝑤 / 𝑥𝐵)
8988eleq2d 2898 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → (𝑘𝐵𝑘𝑤 / 𝑥𝐵))
9087, 893anbi23d 1435 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → ((𝜑𝑥𝐴𝑘𝐵) ↔ (𝜑𝑤𝐴𝑘𝑤 / 𝑥𝐵)))
9190imbi1d 344 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,)+∞)) ↔ ((𝜑𝑤𝐴𝑘𝑤 / 𝑥𝐵) → 𝐶 ∈ (0[,)+∞))))
9286, 91, 40chvarfv 2238 . . . . . . . . . . . . 13 ((𝜑𝑤𝐴𝑘𝑤 / 𝑥𝐵) → 𝐶 ∈ (0[,)+∞))
9376, 78, 80, 92syl3anc 1367 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝐶 ∈ (0[,)+∞))
9493adantllr 717 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ 𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝐶 ∈ (0[,)+∞))
9575, 94fsumge0cl 41852 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ 𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) → Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶 ∈ (0[,)+∞))
9669, 95sge0fsummpt 42671 . . . . . . . . 9 ((𝜑𝑦 ∈ Fin) → (Σ^‘(𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶)) = Σ𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶)
97 inss2 4205 . . . . . . . . . . . . . . . . 17 (𝐵𝑦) ⊆ 𝑦
9897a1i 11 . . . . . . . . . . . . . . . 16 (𝑦 ∈ Fin → (𝐵𝑦) ⊆ 𝑦)
99 ssfi 8737 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ Fin ∧ (𝐵𝑦) ⊆ 𝑦) → (𝐵𝑦) ∈ Fin)
10070, 98, 99syl2anc 586 . . . . . . . . . . . . . . 15 (𝑦 ∈ Fin → (𝐵𝑦) ∈ Fin)
101100ad2antlr 725 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) → (𝐵𝑦) ∈ Fin)
102 simpll 765 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝐵𝑦)) → 𝜑)
103 rabid 3378 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↔ (𝑥𝐴 ∧ (𝐵𝑦) ≠ ∅))
104103biimpi 218 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} → (𝑥𝐴 ∧ (𝐵𝑦) ≠ ∅))
105104simpld 497 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} → 𝑥𝐴)
106105ad2antlr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝐵𝑦)) → 𝑥𝐴)
107 elinel1 4171 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (𝐵𝑦) → 𝑘𝐵)
108107adantl 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝐵𝑦)) → 𝑘𝐵)
109102, 106, 108, 40syl3anc 1367 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝐵𝑦)) → 𝐶 ∈ (0[,)+∞))
110109adantllr 717 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝐵𝑦)) → 𝐶 ∈ (0[,)+∞))
111101, 110sge0fsummpt 42671 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) → (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)) = Σ𝑘 ∈ (𝐵𝑦)𝐶)
112111mpteq2dva 5160 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ Fin) → (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶))) = (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝐵𝑦)𝐶))
113 nfrab1 3384 . . . . . . . . . . . . . 14 𝑥{𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}
114 nfcv 2977 . . . . . . . . . . . . . 14 𝑤{𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}
115 nfcv 2977 . . . . . . . . . . . . . 14 𝑤Σ𝑘 ∈ (𝐵𝑦)𝐶
11683, 14nfin 4192 . . . . . . . . . . . . . . 15 𝑥(𝑤 / 𝑥𝐵𝑦)
117 nfcv 2977 . . . . . . . . . . . . . . 15 𝑥𝐶
118116, 117nfsumw 15046 . . . . . . . . . . . . . 14 𝑥Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶
11988ineq1d 4187 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (𝐵𝑦) = (𝑤 / 𝑥𝐵𝑦))
120119sumeq1d 15057 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → Σ𝑘 ∈ (𝐵𝑦)𝐶 = Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶)
121113, 114, 115, 118, 120cbvmptf 5164 . . . . . . . . . . . . 13 (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝐵𝑦)𝐶) = (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶)
122121a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ Fin) → (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝐵𝑦)𝐶) = (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶))
123112, 122eqtr2d 2857 . . . . . . . . . . 11 ((𝜑𝑦 ∈ Fin) → (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶) = (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶))))
124123fveq2d 6673 . . . . . . . . . 10 ((𝜑𝑦 ∈ Fin) → (Σ^‘(𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶)) = (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))))
125124eqcomd 2827 . . . . . . . . 9 ((𝜑𝑦 ∈ Fin) → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) = (Σ^‘(𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶)))
126120, 114, 113, 115, 118cbvsum 15051 . . . . . . . . . 10 Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶 = Σ𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶
127126a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ Fin) → Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶 = Σ𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶)
12896, 125, 1273eqtr4d 2866 . . . . . . . 8 ((𝜑𝑦 ∈ Fin) → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶)
12955, 8, 128syl2anc 586 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶)
130129eqcomd 2827 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶 = (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))))
13168, 130eqtrd 2856 . . . . 5 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦)) = (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))))
132 sge0iunmptlemre.a . . . . . . . . 9 (𝜑𝐴𝑉)
13377ssriv 3970 . . . . . . . . . 10 {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ⊆ 𝐴
134133a1i 11 . . . . . . . . 9 (𝜑 → {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ⊆ 𝐴)
135132, 134ssexd 5227 . . . . . . . 8 (𝜑 → {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ∈ V)
136 vex 3497 . . . . . . . . . . . . 13 𝑦 ∈ V
137136inex2 5221 . . . . . . . . . . . 12 (𝑤 / 𝑥𝐵𝑦) ∈ V
138137a1i 11 . . . . . . . . . . 11 ((𝜑𝑤𝐴) → (𝑤 / 𝑥𝐵𝑦) ∈ V)
139 icossicc 12823 . . . . . . . . . . . . 13 (0[,)+∞) ⊆ (0[,]+∞)
140 simpll 765 . . . . . . . . . . . . . 14 (((𝜑𝑤𝐴) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝜑)
141 simplr 767 . . . . . . . . . . . . . 14 (((𝜑𝑤𝐴) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝑤𝐴)
14279adantl 484 . . . . . . . . . . . . . 14 (((𝜑𝑤𝐴) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝑘𝑤 / 𝑥𝐵)
143140, 141, 142, 92syl3anc 1367 . . . . . . . . . . . . 13 (((𝜑𝑤𝐴) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝐶 ∈ (0[,)+∞))
144139, 143sseldi 3964 . . . . . . . . . . . 12 (((𝜑𝑤𝐴) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝐶 ∈ (0[,]+∞))
145 eqid 2821 . . . . . . . . . . . 12 (𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶) = (𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)
146144, 145fmptd 6877 . . . . . . . . . . 11 ((𝜑𝑤𝐴) → (𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶):(𝑤 / 𝑥𝐵𝑦)⟶(0[,]+∞))
147138, 146sge0cl 42662 . . . . . . . . . 10 ((𝜑𝑤𝐴) → (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)) ∈ (0[,]+∞))
14877, 147sylan2 594 . . . . . . . . 9 ((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) → (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)) ∈ (0[,]+∞))
149 nfcv 2977 . . . . . . . . . 10 𝑤^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶))
150 nfcv 2977 . . . . . . . . . . 11 𝑥Σ^
151116, 117nfmpt 5162 . . . . . . . . . . 11 𝑥(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)
152150, 151nffv 6679 . . . . . . . . . 10 𝑥^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶))
153119mpteq1d 5154 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝑘 ∈ (𝐵𝑦) ↦ 𝐶) = (𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶))
154153fveq2d 6673 . . . . . . . . . 10 (𝑥 = 𝑤 → (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)) = (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))
155113, 114, 149, 152, 154cbvmptf 5164 . . . . . . . . 9 (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶))) = (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))
156148, 155fmptd 6877 . . . . . . . 8 (𝜑 → (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶))):{𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}⟶(0[,]+∞))
157135, 156sge0xrcl 42666 . . . . . . 7 (𝜑 → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) ∈ ℝ*)
158157adantr 483 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) ∈ ℝ*)
159 eqid 2821 . . . . . . . . 9 (𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶))) = (𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))
160147, 159fmptd 6877 . . . . . . . 8 (𝜑 → (𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶))):𝐴⟶(0[,]+∞))
161132, 160sge0xrcl 42666 . . . . . . 7 (𝜑 → (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))) ∈ ℝ*)
162161adantr 483 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))) ∈ ℝ*)
16355, 2syl 17 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) ∈ ℝ*)
164155fveq2i 6672 . . . . . . . . 9 ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) = (Σ^‘(𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶))))
165164a1i 11 . . . . . . . 8 (𝜑 → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) = (Σ^‘(𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))))
166132, 147, 134sge0lessmpt 42680 . . . . . . . 8 (𝜑 → (Σ^‘(𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))) ≤ (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))))
167165, 166eqbrtrd 5087 . . . . . . 7 (𝜑 → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) ≤ (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))))
168167adantr 483 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) ≤ (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))))
169149, 152, 154cbvmpt 5166 . . . . . . . . . . 11 (𝑥𝐴 ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶))) = (𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))
170169eqcomi 2830 . . . . . . . . . 10 (𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶))) = (𝑥𝐴 ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))
171170fveq2i 6672 . . . . . . . . 9 ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶))))
172171a1i 11 . . . . . . . 8 (𝜑 → (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))))
173136inex2 5221 . . . . . . . . . . 11 (𝐵𝑦) ∈ V
174173a1i 11 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐵𝑦) ∈ V)
175107, 30sylan2 594 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ (𝐵𝑦)) → 𝐶 ∈ (0[,]+∞))
176 eqid 2821 . . . . . . . . . . 11 (𝑘 ∈ (𝐵𝑦) ↦ 𝐶) = (𝑘 ∈ (𝐵𝑦) ↦ 𝐶)
177175, 176fmptd 6877 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑘 ∈ (𝐵𝑦) ↦ 𝐶):(𝐵𝑦)⟶(0[,]+∞))
178174, 177sge0cl 42662 . . . . . . . . 9 ((𝜑𝑥𝐴) → (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)) ∈ (0[,]+∞))
17933, 31sge0cl 42662 . . . . . . . . 9 ((𝜑𝑥𝐴) → (Σ^‘(𝑘𝐵𝐶)) ∈ (0[,]+∞))
180 inss1 4204 . . . . . . . . . . 11 (𝐵𝑦) ⊆ 𝐵
181180a1i 11 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐵𝑦) ⊆ 𝐵)
18233, 30, 181sge0lessmpt 42680 . . . . . . . . 9 ((𝜑𝑥𝐴) → (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)) ≤ (Σ^‘(𝑘𝐵𝐶)))
18313, 132, 178, 179, 182sge0lempt 42691 . . . . . . . 8 (𝜑 → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
184172, 183eqbrtrd 5087 . . . . . . 7 (𝜑 → (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
185184adantr 483 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
186158, 162, 163, 168, 185xrletrd 12554 . . . . 5 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
187131, 186eqbrtrd 5087 . . . 4 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦)) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
188187ralrimiva 3182 . . 3 (𝜑 → ∀𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)(Σ^‘((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦)) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
189 sge0iunmptlemre.iue . . . 4 (𝜑 𝑥𝐴 𝐵 ∈ V)
190 sge0iunmptlemre.f . . . 4 (𝜑 → (𝑘 𝑥𝐴 𝐵𝐶): 𝑥𝐴 𝐵⟶(0[,]+∞))
191189, 190, 2sge0lefi 42679 . . 3 (𝜑 → ((Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) ↔ ∀𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)(Σ^‘((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦)) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))))
192188, 191mpbird 259 . 2 (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
193 elpwinss 41309 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
194193resmptd 5907 . . . . . . . 8 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → ((𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) ↾ 𝑦) = (𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶))))
195194fveq2d 6673 . . . . . . 7 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → (Σ^‘((𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) ↾ 𝑦)) = (Σ^‘(𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶)))))
196195adantl 484 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘((𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) ↾ 𝑦)) = (Σ^‘(𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶)))))
197 elinel2 4172 . . . . . . . 8 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
198197adantl 484 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
199 0xr 10687 . . . . . . . . 9 0 ∈ ℝ*
200199a1i 11 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 0 ∈ ℝ*)
201 pnfxr 10694 . . . . . . . . 9 +∞ ∈ ℝ*
202201a1i 11 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → +∞ ∈ ℝ*)
203 simpll 765 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝜑)
204193sselda 3966 . . . . . . . . . . 11 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥𝑦) → 𝑥𝐴)
205204adantll 712 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝑥𝐴)
206203, 205, 33syl2anc 586 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝐵𝑊)
207203, 205, 31syl2anc 586 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → (𝑘𝐵𝐶):𝐵⟶(0[,]+∞))
208206, 207sge0xrcl 42666 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → (Σ^‘(𝑘𝐵𝐶)) ∈ ℝ*)
209206, 207sge0ge0 42665 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 0 ≤ (Σ^‘(𝑘𝐵𝐶)))
210203, 205, 35syl2anc 586 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → (Σ^‘(𝑘𝐵𝐶)) ∈ ℝ)
211 ltpnf 12514 . . . . . . . . 9 ((Σ^‘(𝑘𝐵𝐶)) ∈ ℝ → (Σ^‘(𝑘𝐵𝐶)) < +∞)
212210, 211syl 17 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → (Σ^‘(𝑘𝐵𝐶)) < +∞)
213200, 202, 208, 209, 212elicod 12786 . . . . . . 7 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → (Σ^‘(𝑘𝐵𝐶)) ∈ (0[,)+∞))
214198, 213sge0fsummpt 42671 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶)))) = Σ𝑥𝑦^‘(𝑘𝐵𝐶)))
215196, 214eqtrd 2856 . . . . 5 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘((𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) ↾ 𝑦)) = Σ𝑥𝑦^‘(𝑘𝐵𝐶)))
216 nfv 1911 . . . . . 6 𝑘(𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin))
217189adantr 483 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥𝐴 𝐵 ∈ V)
218190fvmptelrn 6876 . . . . . . 7 ((𝜑𝑘 𝑥𝐴 𝐵) → 𝐶 ∈ (0[,]+∞))
219218adantlr 713 . . . . . 6 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 𝑥𝐴 𝐵) → 𝐶 ∈ (0[,]+∞))
220198, 210fsumrecl 15090 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ∈ ℝ)
221220rexrd 10690 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ∈ ℝ*)
222 nfv 1911 . . . . . . . 8 𝑘((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+)
223 iunss1 4932 . . . . . . . . . . . 12 (𝑦𝐴 𝑥𝑦 𝐵 𝑥𝐴 𝐵)
224193, 223syl 17 . . . . . . . . . . 11 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥𝑦 𝐵 𝑥𝐴 𝐵)
225224adantl 484 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥𝑦 𝐵 𝑥𝐴 𝐵)
226217, 225ssexd 5227 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥𝑦 𝐵 ∈ V)
227226adantr 483 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → 𝑥𝑦 𝐵 ∈ V)
228 simpll 765 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 𝑥𝑦 𝐵) → 𝜑)
229225sselda 3966 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 𝑥𝑦 𝐵) → 𝑘 𝑥𝐴 𝐵)
230228, 229, 218syl2anc 586 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 𝑥𝑦 𝐵) → 𝐶 ∈ (0[,]+∞))
231230adantlr 713 . . . . . . . 8 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑘 𝑥𝑦 𝐵) → 𝐶 ∈ (0[,]+∞))
232 simpr 487 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → 𝑝 ∈ ℝ+)
233193adantl 484 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦𝐴)
23457adantr 483 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Disj 𝑥𝐴 𝐵)
235 disjss1 5036 . . . . . . . . . . . 12 (𝑦𝐴 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝑦 𝐵))
236233, 234, 235sylc 65 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Disj 𝑥𝑦 𝐵)
2372033adant3 1128 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦𝑘𝐵) → 𝜑)
2382053adant3 1128 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦𝑘𝐵) → 𝑥𝐴)
239 simp3 1134 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦𝑘𝐵) → 𝑘𝐵)
240237, 238, 239, 25syl3anc 1367 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
241198, 206, 236, 240, 210sge0iunmptlemfi 42694 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) = (Σ^‘(𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶)))))
242214, 220eqeltrd 2913 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶)))) ∈ ℝ)
243241, 242eqeltrd 2913 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) ∈ ℝ)
244243adantr 483 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) ∈ ℝ)
245222, 227, 231, 232, 244sge0ltfirpmpt 42689 . . . . . . 7 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → ∃𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)(Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝))
246 nfv 1911 . . . . . . . 8 𝑏((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+)
247 nfre1 3306 . . . . . . . 8 𝑏𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝)
248223sspwd 4553 . . . . . . . . . . . . . . . 16 (𝑦𝐴 → 𝒫 𝑥𝑦 𝐵 ⊆ 𝒫 𝑥𝐴 𝐵)
249193, 248syl 17 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝒫 𝑥𝑦 𝐵 ⊆ 𝒫 𝑥𝐴 𝐵)
250249adantr 483 . . . . . . . . . . . . . 14 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝒫 𝑥𝑦 𝐵 ⊆ 𝒫 𝑥𝐴 𝐵)
251 elinel1 4171 . . . . . . . . . . . . . . 15 (𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) → 𝑏 ∈ 𝒫 𝑥𝑦 𝐵)
252251adantl 484 . . . . . . . . . . . . . 14 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑏 ∈ 𝒫 𝑥𝑦 𝐵)
253250, 252sseldd 3967 . . . . . . . . . . . . 13 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑏 ∈ 𝒫 𝑥𝐴 𝐵)
254 elinel2 4172 . . . . . . . . . . . . . 14 (𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) → 𝑏 ∈ Fin)
255254adantl 484 . . . . . . . . . . . . 13 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑏 ∈ Fin)
256253, 255elind 4170 . . . . . . . . . . . 12 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin))
257256ad4ant24 752 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin))
2582573adant3 1128 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → 𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin))
259221ad2antrr 724 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ∈ ℝ*)
2602593adant3 1128 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ∈ ℝ*)
261 nfv 1911 . . . . . . . . . . . . . . . 16 𝑘((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin))
262226adantr 483 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑥𝑦 𝐵 ∈ V)
263230adantlr 713 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) ∧ 𝑘 𝑥𝑦 𝐵) → 𝐶 ∈ (0[,]+∞))
264243adantr 483 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) ∈ ℝ)
265251elpwid 4549 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) → 𝑏 𝑥𝑦 𝐵)
266265adantl 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑏 𝑥𝑦 𝐵)
267261, 262, 263, 264, 266sge0ssrempt 42686 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → (Σ^‘(𝑘𝑏𝐶)) ∈ ℝ)
268267rexrd 10690 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → (Σ^‘(𝑘𝑏𝐶)) ∈ ℝ*)
269268adantlr 713 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → (Σ^‘(𝑘𝑏𝐶)) ∈ ℝ*)
270 rpxr 12397 . . . . . . . . . . . . . 14 (𝑝 ∈ ℝ+𝑝 ∈ ℝ*)
271270ad2antlr 725 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑝 ∈ ℝ*)
272269, 271xaddcld 12693 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝) ∈ ℝ*)
2732723adant3 1128 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝) ∈ ℝ*)
274 simp3 1134 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝))
275241, 214eqtr2d 2857 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) = (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)))
276275adantr 483 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) = (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)))
2772763ad2ant1 1129 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) = (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)))
278267adantlr 713 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → (Σ^‘(𝑘𝑏𝐶)) ∈ ℝ)
279 rpre 12396 . . . . . . . . . . . . . . . 16 (𝑝 ∈ ℝ+𝑝 ∈ ℝ)
280279ad2antlr 725 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑝 ∈ ℝ)
281 rexadd 12624 . . . . . . . . . . . . . . 15 (((Σ^‘(𝑘𝑏𝐶)) ∈ ℝ ∧ 𝑝 ∈ ℝ) → ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝) = ((Σ^‘(𝑘𝑏𝐶)) + 𝑝))
282278, 280, 281syl2anc 586 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝) = ((Σ^‘(𝑘𝑏𝐶)) + 𝑝))
2832823adant3 1128 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝) = ((Σ^‘(𝑘𝑏𝐶)) + 𝑝))
284277, 283breq12d 5078 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → (Σ𝑥𝑦^‘(𝑘𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝) ↔ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)))
285274, 284mpbird 259 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝))
286260, 273, 285xrltled 12542 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝))
287 rspe 3304 . . . . . . . . . 10 ((𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) ∧ Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝)) → ∃𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝))
288258, 286, 287syl2anc 586 . . . . . . . . 9 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → ∃𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝))
2892883exp 1115 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → (𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) → ((Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝) → ∃𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝))))
290246, 247, 289rexlimd 3317 . . . . . . 7 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → (∃𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)(Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝) → ∃𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝)))
291245, 290mpd 15 . . . . . 6 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → ∃𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝))
292216, 217, 219, 221, 291sge0gerpmpt 42683 . . . . 5 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)))
293215, 292eqbrtrd 5087 . . . 4 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘((𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) ↾ 𝑦)) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)))
294293ralrimiva 3182 . . 3 (𝜑 → ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘((𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) ↾ 𝑦)) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)))
295 eqid 2821 . . . . 5 (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) = (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))
296179, 295fmptd 6877 . . . 4 (𝜑 → (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))):𝐴⟶(0[,]+∞))
297132, 296, 1sge0lefi 42679 . . 3 (𝜑 → ((Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) ↔ ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘((𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) ↾ 𝑦)) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶))))
298294, 297mpbird 259 . 2 (𝜑 → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)))
2991, 2, 192, 298xrletrid 12547 1 (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  csb 3882  cin 3934  wss 3935  c0 4290  𝒫 cpw 4538   ciun 4918  Disj wdisj 5030   class class class wbr 5065  cmpt 5145  cres 5556  wf 6350  cfv 6354  (class class class)co 7155  Fincfn 8508  cc 10534  cr 10535  0cc0 10536   + caddc 10539  +∞cpnf 10671  *cxr 10673   < clt 10674  cle 10675  +crp 12388   +𝑒 cxad 12504  [,)cico 12739  [,]cicc 12740  Σcsu 15041  Σ^csumge0 42643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-ac2 9884  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-disj 5031  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-oi 8973  df-card 9367  df-acn 9370  df-ac 9541  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-xadd 12507  df-ico 12743  df-icc 12744  df-fz 12892  df-fzo 13033  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-sum 15042  df-sumge0 42644
This theorem is referenced by:  sge0iunmpt  42699
  Copyright terms: Public domain W3C validator