Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0less Structured version   Visualization version   GIF version

Theorem sge0less 39916
Description: A shorter sum of nonnegative extended reals is smaller than a longer one. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0less.1 (𝜑𝑋𝑉)
sge0less.2 (𝜑𝐹:𝑋⟶(0[,]+∞))
Assertion
Ref Expression
sge0less (𝜑 → (Σ^‘(𝐹𝑌)) ≤ (Σ^𝐹))

Proof of Theorem sge0less
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0less.1 . . . . . . 7 (𝜑𝑋𝑉)
2 inex1g 4761 . . . . . . 7 (𝑋𝑉 → (𝑋𝑌) ∈ V)
31, 2syl 17 . . . . . 6 (𝜑 → (𝑋𝑌) ∈ V)
4 sge0less.2 . . . . . . 7 (𝜑𝐹:𝑋⟶(0[,]+∞))
5 fresin 6030 . . . . . . 7 (𝐹:𝑋⟶(0[,]+∞) → (𝐹𝑌):(𝑋𝑌)⟶(0[,]+∞))
64, 5syl 17 . . . . . 6 (𝜑 → (𝐹𝑌):(𝑋𝑌)⟶(0[,]+∞))
73, 6sge0xrcl 39909 . . . . 5 (𝜑 → (Σ^‘(𝐹𝑌)) ∈ ℝ*)
8 pnfge 11908 . . . . 5 ((Σ^‘(𝐹𝑌)) ∈ ℝ* → (Σ^‘(𝐹𝑌)) ≤ +∞)
97, 8syl 17 . . . 4 (𝜑 → (Σ^‘(𝐹𝑌)) ≤ +∞)
109adantr 481 . . 3 ((𝜑 ∧ (Σ^𝐹) = +∞) → (Σ^‘(𝐹𝑌)) ≤ +∞)
11 id 22 . . . . 5 ((Σ^𝐹) = +∞ → (Σ^𝐹) = +∞)
1211eqcomd 2627 . . . 4 ((Σ^𝐹) = +∞ → +∞ = (Σ^𝐹))
1312adantl 482 . . 3 ((𝜑 ∧ (Σ^𝐹) = +∞) → +∞ = (Σ^𝐹))
1410, 13breqtrd 4639 . 2 ((𝜑 ∧ (Σ^𝐹) = +∞) → (Σ^‘(𝐹𝑌)) ≤ (Σ^𝐹))
15 simpl 473 . . 3 ((𝜑 ∧ ¬ (Σ^𝐹) = +∞) → 𝜑)
16 simpr 477 . . . 4 ((𝜑 ∧ ¬ (Σ^𝐹) = +∞) → ¬ (Σ^𝐹) = +∞)
1715, 1syl 17 . . . . 5 ((𝜑 ∧ ¬ (Σ^𝐹) = +∞) → 𝑋𝑉)
1815, 4syl 17 . . . . 5 ((𝜑 ∧ ¬ (Σ^𝐹) = +∞) → 𝐹:𝑋⟶(0[,]+∞))
1917, 18sge0repnf 39910 . . . 4 ((𝜑 ∧ ¬ (Σ^𝐹) = +∞) → ((Σ^𝐹) ∈ ℝ ↔ ¬ (Σ^𝐹) = +∞))
2016, 19mpbird 247 . . 3 ((𝜑 ∧ ¬ (Σ^𝐹) = +∞) → (Σ^𝐹) ∈ ℝ)
21 elinel1 3777 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) → 𝑥 ∈ 𝒫 (𝑋𝑌))
22 elpwi 4140 . . . . . . . . . . . . . . . 16 (𝑥 ∈ 𝒫 (𝑋𝑌) → 𝑥 ⊆ (𝑋𝑌))
2321, 22syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) → 𝑥 ⊆ (𝑋𝑌))
24 inss2 3812 . . . . . . . . . . . . . . . 16 (𝑋𝑌) ⊆ 𝑌
2524a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) → (𝑋𝑌) ⊆ 𝑌)
2623, 25sstrd 3593 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) → 𝑥𝑌)
2726adantr 481 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ∧ 𝑦𝑥) → 𝑥𝑌)
28 simpr 477 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝑥)
2927, 28sseldd 3584 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝑌)
30 fvres 6164 . . . . . . . . . . . 12 (𝑦𝑌 → ((𝐹𝑌)‘𝑦) = (𝐹𝑦))
3129, 30syl 17 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ∧ 𝑦𝑥) → ((𝐹𝑌)‘𝑦) = (𝐹𝑦))
3231ralrimiva 2960 . . . . . . . . . 10 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) → ∀𝑦𝑥 ((𝐹𝑌)‘𝑦) = (𝐹𝑦))
3332sumeq2d 14366 . . . . . . . . 9 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) → Σ𝑦𝑥 ((𝐹𝑌)‘𝑦) = Σ𝑦𝑥 (𝐹𝑦))
3433mpteq2ia 4700 . . . . . . . 8 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)) = (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
35 inss1 3811 . . . . . . . . . . 11 (𝑋𝑌) ⊆ 𝑋
36 sspwb 4878 . . . . . . . . . . . 12 ((𝑋𝑌) ⊆ 𝑋 ↔ 𝒫 (𝑋𝑌) ⊆ 𝒫 𝑋)
3736biimpi 206 . . . . . . . . . . 11 ((𝑋𝑌) ⊆ 𝑋 → 𝒫 (𝑋𝑌) ⊆ 𝒫 𝑋)
3835, 37ax-mp 5 . . . . . . . . . 10 𝒫 (𝑋𝑌) ⊆ 𝒫 𝑋
39 ssrin 3816 . . . . . . . . . 10 (𝒫 (𝑋𝑌) ⊆ 𝒫 𝑋 → (𝒫 (𝑋𝑌) ∩ Fin) ⊆ (𝒫 𝑋 ∩ Fin))
4038, 39ax-mp 5 . . . . . . . . 9 (𝒫 (𝑋𝑌) ∩ Fin) ⊆ (𝒫 𝑋 ∩ Fin)
41 mptss 5413 . . . . . . . . 9 ((𝒫 (𝑋𝑌) ∩ Fin) ⊆ (𝒫 𝑋 ∩ Fin) → (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
4240, 41ax-mp 5 . . . . . . . 8 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
4334, 42eqsstri 3614 . . . . . . 7 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)) ⊆ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
44 rnss 5314 . . . . . . 7 ((𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)) ⊆ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) → ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)) ⊆ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
4543, 44ax-mp 5 . . . . . 6 ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)) ⊆ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
4645a1i 11 . . . . 5 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)) ⊆ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
474adantr 481 . . . . . . . 8 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → 𝐹:𝑋⟶(0[,]+∞))
481adantr 481 . . . . . . . . 9 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → 𝑋𝑉)
49 simpr 477 . . . . . . . . 9 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^𝐹) ∈ ℝ)
5048, 47, 49sge0rern 39912 . . . . . . . 8 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ¬ +∞ ∈ ran 𝐹)
5147, 50fge0iccico 39894 . . . . . . 7 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → 𝐹:𝑋⟶(0[,)+∞))
5251sge0rnre 39888 . . . . . 6 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ)
53 ressxr 10027 . . . . . 6 ℝ ⊆ ℝ*
5452, 53syl6ss 3595 . . . . 5 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ*)
55 supxrss 12105 . . . . 5 ((ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)) ⊆ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ∧ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ*) → sup(ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)), ℝ*, < ) ≤ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
5646, 54, 55syl2anc 692 . . . 4 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → sup(ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)), ℝ*, < ) ≤ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
5748, 2syl 17 . . . . . 6 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (𝑋𝑌) ∈ V)
5847, 5syl 17 . . . . . . 7 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (𝐹𝑌):(𝑋𝑌)⟶(0[,]+∞))
59 nelrnres 38848 . . . . . . . 8 (¬ +∞ ∈ ran 𝐹 → ¬ +∞ ∈ ran (𝐹𝑌))
6050, 59syl 17 . . . . . . 7 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ¬ +∞ ∈ ran (𝐹𝑌))
6158, 60fge0iccico 39894 . . . . . 6 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (𝐹𝑌):(𝑋𝑌)⟶(0[,)+∞))
6257, 61sge0reval 39896 . . . . 5 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^‘(𝐹𝑌)) = sup(ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)), ℝ*, < ))
6348, 51sge0reval 39896 . . . . 5 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
6462, 63breq12d 4626 . . . 4 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ((Σ^‘(𝐹𝑌)) ≤ (Σ^𝐹) ↔ sup(ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)), ℝ*, < ) ≤ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < )))
6556, 64mpbird 247 . . 3 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^‘(𝐹𝑌)) ≤ (Σ^𝐹))
6615, 20, 65syl2anc 692 . 2 ((𝜑 ∧ ¬ (Σ^𝐹) = +∞) → (Σ^‘(𝐹𝑌)) ≤ (Σ^𝐹))
6714, 66pm2.61dan 831 1 (𝜑 → (Σ^‘(𝐹𝑌)) ≤ (Σ^𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1987  Vcvv 3186  cin 3554  wss 3555  𝒫 cpw 4130   class class class wbr 4613  cmpt 4673  ran crn 5075  cres 5076  wf 5843  cfv 5847  (class class class)co 6604  Fincfn 7899  supcsup 8290  cr 9879  0cc0 9880  +∞cpnf 10015  *cxr 10017   < clt 10018  cle 10019  [,]cicc 12120  Σcsu 14350  Σ^csumge0 39886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-sumge0 39887
This theorem is referenced by:  sge0ssre  39921  sge0lefi  39922  sge0lessmpt  39923  sge0resrnlem  39927  sge0le  39931
  Copyright terms: Public domain W3C validator