Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0ltfirp Structured version   Visualization version   GIF version

Theorem sge0ltfirp 39921
Description: If the sum of nonnegative extended reals is real, then it can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0ltfirp.x (𝜑𝑋𝑉)
sge0ltfirp.f (𝜑𝐹:𝑋⟶(0[,]+∞))
sge0ltfirp.y (𝜑𝑌 ∈ ℝ+)
sge0ltfirp.re (𝜑 → (Σ^𝐹) ∈ ℝ)
Assertion
Ref Expression
sge0ltfirp (𝜑 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑋   𝑥,𝑌   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem sge0ltfirp
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0ltfirp.f . . . . 5 (𝜑𝐹:𝑋⟶(0[,]+∞))
2 sge0ltfirp.x . . . . . 6 (𝜑𝑋𝑉)
3 sge0ltfirp.re . . . . . 6 (𝜑 → (Σ^𝐹) ∈ ℝ)
42, 1, 3sge0rern 39909 . . . . 5 (𝜑 → ¬ +∞ ∈ ran 𝐹)
51, 4fge0iccico 39891 . . . 4 (𝜑𝐹:𝑋⟶(0[,)+∞))
65sge0rnre 39885 . . 3 (𝜑 → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ)
7 sge0rnn0 39889 . . . 4 ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ≠ ∅
87a1i 11 . . 3 (𝜑 → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ≠ ∅)
92, 1, 3sge0rnbnd 39914 . . 3 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))𝑤𝑧)
10 sge0ltfirp.y . . 3 (𝜑𝑌 ∈ ℝ+)
116, 8, 9, 10suprltrp 39005 . 2 (𝜑 → ∃𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤)
12 nfv 1840 . . 3 𝑤𝜑
13 nfv 1840 . . 3 𝑤𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌)
14 simp1 1059 . . . . 5 ((𝜑𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤) → 𝜑)
15 vex 3189 . . . . . . . . . 10 𝑤 ∈ V
16 eqid 2621 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
1716elrnmpt 5332 . . . . . . . . . 10 (𝑤 ∈ V → (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦)))
1815, 17ax-mp 5 . . . . . . . . 9 (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦))
1918biimpi 206 . . . . . . . 8 (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦))
2019adantr 481 . . . . . . 7 ((𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦))
21 nfmpt1 4707 . . . . . . . . . . . . 13 𝑥(𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
2221nfrn 5328 . . . . . . . . . . . 12 𝑥ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
23 nfcv 2761 . . . . . . . . . . . 12 𝑥
24 nfcv 2761 . . . . . . . . . . . 12 𝑥 <
2522, 23, 24nfsup 8301 . . . . . . . . . . 11 𝑥sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < )
26 nfcv 2761 . . . . . . . . . . 11 𝑥
27 nfcv 2761 . . . . . . . . . . 11 𝑥𝑌
2825, 26, 27nfov 6630 . . . . . . . . . 10 𝑥(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌)
29 nfcv 2761 . . . . . . . . . 10 𝑥𝑤
3028, 24, 29nfbr 4659 . . . . . . . . 9 𝑥(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤
31 simpl 473 . . . . . . . . . . . 12 (((sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤𝑤 = Σ𝑦𝑥 (𝐹𝑦)) → (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤)
32 simpr 477 . . . . . . . . . . . 12 (((sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤𝑤 = Σ𝑦𝑥 (𝐹𝑦)) → 𝑤 = Σ𝑦𝑥 (𝐹𝑦))
3331, 32breqtrd 4639 . . . . . . . . . . 11 (((sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤𝑤 = Σ𝑦𝑥 (𝐹𝑦)) → (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦))
3433ex 450 . . . . . . . . . 10 ((sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤 → (𝑤 = Σ𝑦𝑥 (𝐹𝑦) → (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)))
3534a1d 25 . . . . . . . . 9 ((sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤 → (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → (𝑤 = Σ𝑦𝑥 (𝐹𝑦) → (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦))))
3630, 35reximdai 3006 . . . . . . . 8 ((sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤 → (∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)))
3736adantl 482 . . . . . . 7 ((𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤) → (∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)))
3820, 37mpd 15 . . . . . 6 ((𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦))
39383adant1 1077 . . . . 5 ((𝜑𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦))
40 simpl 473 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → (𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)))
412, 1, 3sge0supre 39910 . . . . . . . . . . . . 13 (𝜑 → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ))
4241oveq1d 6619 . . . . . . . . . . . 12 (𝜑 → ((Σ^𝐹) − 𝑌) = (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌))
4342adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → ((Σ^𝐹) − 𝑌) = (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌))
44 simpr 477 . . . . . . . . . . 11 ((𝜑 ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦))
4543, 44eqbrtrd 4635 . . . . . . . . . 10 ((𝜑 ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → ((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦))
4645adantlr 750 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → ((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦))
47 simpr 477 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ ((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → ((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦))
483adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^𝐹) ∈ ℝ)
4910rpred 11816 . . . . . . . . . . . . . 14 (𝜑𝑌 ∈ ℝ)
5049adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑌 ∈ ℝ)
51 elinel2 3778 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ Fin)
5251adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ Fin)
53 rge0ssre 12222 . . . . . . . . . . . . . . 15 (0[,)+∞) ⊆ ℝ
545adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,)+∞))
5554adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝐹:𝑋⟶(0[,)+∞))
56 elpwinss 38698 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥𝑋)
5756adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥𝑋)
5857sselda 3583 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝑦𝑋)
5955, 58ffvelrnd 6316 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (0[,)+∞))
6053, 59sseldi 3581 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ ℝ)
6152, 60fsumrecl 14398 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) ∈ ℝ)
6248, 50, 61ltsubaddd 10567 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦) ↔ (Σ^𝐹) < (Σ𝑦𝑥 (𝐹𝑦) + 𝑌)))
6362adantr 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ ((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → (((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦) ↔ (Σ^𝐹) < (Σ𝑦𝑥 (𝐹𝑦) + 𝑌)))
6447, 63mpbid 222 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ ((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → (Σ^𝐹) < (Σ𝑦𝑥 (𝐹𝑦) + 𝑌))
6554, 57fssresd 6028 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹𝑥):𝑥⟶(0[,)+∞))
6652, 65sge0fsum 39908 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) = Σ𝑦𝑥 ((𝐹𝑥)‘𝑦))
67 fvres 6164 . . . . . . . . . . . . . . 15 (𝑦𝑥 → ((𝐹𝑥)‘𝑦) = (𝐹𝑦))
6867sumeq2i 14363 . . . . . . . . . . . . . 14 Σ𝑦𝑥 ((𝐹𝑥)‘𝑦) = Σ𝑦𝑥 (𝐹𝑦)
6968a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦𝑥 ((𝐹𝑥)‘𝑦) = Σ𝑦𝑥 (𝐹𝑦))
7066, 69eqtr2d 2656 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) = (Σ^‘(𝐹𝑥)))
7170oveq1d 6619 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ𝑦𝑥 (𝐹𝑦) + 𝑌) = ((Σ^‘(𝐹𝑥)) + 𝑌))
7271adantr 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ ((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → (Σ𝑦𝑥 (𝐹𝑦) + 𝑌) = ((Σ^‘(𝐹𝑥)) + 𝑌))
7364, 72breqtrd 4639 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ ((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → (Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌))
7440, 46, 73syl2anc 692 . . . . . . . 8 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → (Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌))
7574ex 450 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → ((sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦) → (Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌)))
7675reximdva 3011 . . . . . 6 (𝜑 → (∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌)))
7776imp 445 . . . . 5 ((𝜑 ∧ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌))
7814, 39, 77syl2anc 692 . . . 4 ((𝜑𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌))
79783exp 1261 . . 3 (𝜑 → (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) → ((sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌))))
8012, 13, 79rexlimd 3019 . 2 (𝜑 → (∃𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌)))
8111, 80mpd 15 1 (𝜑 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wrex 2908  Vcvv 3186  cin 3554  wss 3555  c0 3891  𝒫 cpw 4130   class class class wbr 4613  cmpt 4673  ran crn 5075  cres 5076  wf 5843  cfv 5847  (class class class)co 6604  Fincfn 7899  supcsup 8290  cr 9879  0cc0 9880   + caddc 9883  +∞cpnf 10015   < clt 10018  cmin 10210  +crp 11776  [,)cico 12119  [,]cicc 12120  Σcsu 14350  Σ^csumge0 39883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-sumge0 39884
This theorem is referenced by:  sge0ltfirpmpt  39929  sge0ltfirpmpt2  39947
  Copyright terms: Public domain W3C validator