Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0ltfirpmpt2 Structured version   Visualization version   GIF version

Theorem sge0ltfirpmpt2 42702
Description: If the extended sum of nonnegative reals is not +∞, then it can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0ltfirpmpt2.xph 𝑥𝜑
sge0ltfirpmpt2.a (𝜑𝐴𝑉)
sge0ltfirpmpt2.b ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
sge0ltfirpmpt2.rp (𝜑𝑌 ∈ ℝ+)
sge0ltfirpmpt2.re (𝜑 → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ)
Assertion
Ref Expression
sge0ltfirpmpt2 (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ𝑥𝑦 𝐵 + 𝑌))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑦,𝑌   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem sge0ltfirpmpt2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 sge0ltfirpmpt2.a . . 3 (𝜑𝐴𝑉)
2 sge0ltfirpmpt2.xph . . . 4 𝑥𝜑
3 sge0ltfirpmpt2.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
4 eqid 2821 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
52, 3, 4fmptdf 6875 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴⟶(0[,]+∞))
6 sge0ltfirpmpt2.rp . . 3 (𝜑𝑌 ∈ ℝ+)
7 sge0ltfirpmpt2.re . . 3 (𝜑 → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ)
81, 5, 6, 7sge0ltfirp 42676 . 2 (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌))
9 simpr 487 . . . . 5 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑥𝐴𝐵)) < ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌)) → (Σ^‘(𝑥𝐴𝐵)) < ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌))
10 elpwinss 41304 . . . . . . . . . . 11 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
1110resmptd 5902 . . . . . . . . . 10 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → ((𝑥𝐴𝐵) ↾ 𝑦) = (𝑥𝑦𝐵))
1211fveq2d 6668 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → (Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) = (Σ^‘(𝑥𝑦𝐵)))
1312adantl 484 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) = (Σ^‘(𝑥𝑦𝐵)))
14 elinel2 4172 . . . . . . . . . 10 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
1514adantl 484 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
16 nfv 1911 . . . . . . . . . . 11 𝑥 𝑦 ∈ (𝒫 𝐴 ∩ Fin)
172, 16nfan 1896 . . . . . . . . . 10 𝑥(𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin))
18 simpll 765 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝜑)
1910sselda 3966 . . . . . . . . . . . 12 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥𝑦) → 𝑥𝐴)
2019adantll 712 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝑥𝐴)
212, 1, 3, 7sge0rernmpt 42698 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞))
2218, 20, 21syl2anc 586 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝐵 ∈ (0[,)+∞))
23 eqid 2821 . . . . . . . . . 10 (𝑥𝑦𝐵) = (𝑥𝑦𝐵)
2417, 22, 23fmptdf 6875 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥𝑦𝐵):𝑦⟶(0[,)+∞))
2515, 24sge0fsum 42663 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑥𝑦𝐵)) = Σ𝑘𝑦 ((𝑥𝑦𝐵)‘𝑘))
26 simpr 487 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝑘𝑦)
27 simpll 765 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝜑)
2810sselda 3966 . . . . . . . . . . . . 13 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑦) → 𝑘𝐴)
2928adantll 712 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝑘𝐴)
30 nfv 1911 . . . . . . . . . . . . . . 15 𝑥 𝑘𝐴
312, 30nfan 1896 . . . . . . . . . . . . . 14 𝑥(𝜑𝑘𝐴)
32 nfcsb1v 3906 . . . . . . . . . . . . . . 15 𝑥𝑘 / 𝑥𝐵
3332nfel1 2994 . . . . . . . . . . . . . 14 𝑥𝑘 / 𝑥𝐵 ∈ (0[,)+∞)
3431, 33nfim 1893 . . . . . . . . . . . . 13 𝑥((𝜑𝑘𝐴) → 𝑘 / 𝑥𝐵 ∈ (0[,)+∞))
35 eleq1w 2895 . . . . . . . . . . . . . . 15 (𝑥 = 𝑘 → (𝑥𝐴𝑘𝐴))
3635anbi2d 630 . . . . . . . . . . . . . 14 (𝑥 = 𝑘 → ((𝜑𝑥𝐴) ↔ (𝜑𝑘𝐴)))
37 csbeq1a 3896 . . . . . . . . . . . . . . 15 (𝑥 = 𝑘𝐵 = 𝑘 / 𝑥𝐵)
3837eleq1d 2897 . . . . . . . . . . . . . 14 (𝑥 = 𝑘 → (𝐵 ∈ (0[,)+∞) ↔ 𝑘 / 𝑥𝐵 ∈ (0[,)+∞)))
3936, 38imbi12d 347 . . . . . . . . . . . . 13 (𝑥 = 𝑘 → (((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞)) ↔ ((𝜑𝑘𝐴) → 𝑘 / 𝑥𝐵 ∈ (0[,)+∞))))
4034, 39, 21chvarfv 2238 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝑘 / 𝑥𝐵 ∈ (0[,)+∞))
4127, 29, 40syl2anc 586 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝑘 / 𝑥𝐵 ∈ (0[,)+∞))
42 nfcv 2977 . . . . . . . . . . . . 13 𝑘𝐵
4342, 32, 37cbvmpt 5159 . . . . . . . . . . . 12 (𝑥𝑦𝐵) = (𝑘𝑦𝑘 / 𝑥𝐵)
4443fvmpt2 6773 . . . . . . . . . . 11 ((𝑘𝑦𝑘 / 𝑥𝐵 ∈ (0[,)+∞)) → ((𝑥𝑦𝐵)‘𝑘) = 𝑘 / 𝑥𝐵)
4526, 41, 44syl2anc 586 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → ((𝑥𝑦𝐵)‘𝑘) = 𝑘 / 𝑥𝐵)
4645sumeq2dv 15054 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 ((𝑥𝑦𝐵)‘𝑘) = Σ𝑘𝑦 𝑘 / 𝑥𝐵)
47 eqcom 2828 . . . . . . . . . . . . . 14 (𝑥 = 𝑘𝑘 = 𝑥)
4847imbi1i 352 . . . . . . . . . . . . 13 ((𝑥 = 𝑘𝐵 = 𝑘 / 𝑥𝐵) ↔ (𝑘 = 𝑥𝐵 = 𝑘 / 𝑥𝐵))
49 eqcom 2828 . . . . . . . . . . . . . 14 (𝐵 = 𝑘 / 𝑥𝐵𝑘 / 𝑥𝐵 = 𝐵)
5049imbi2i 338 . . . . . . . . . . . . 13 ((𝑘 = 𝑥𝐵 = 𝑘 / 𝑥𝐵) ↔ (𝑘 = 𝑥𝑘 / 𝑥𝐵 = 𝐵))
5148, 50bitri 277 . . . . . . . . . . . 12 ((𝑥 = 𝑘𝐵 = 𝑘 / 𝑥𝐵) ↔ (𝑘 = 𝑥𝑘 / 𝑥𝐵 = 𝐵))
5237, 51mpbi 232 . . . . . . . . . . 11 (𝑘 = 𝑥𝑘 / 𝑥𝐵 = 𝐵)
53 nfcv 2977 . . . . . . . . . . 11 𝑥𝑦
54 nfcv 2977 . . . . . . . . . . 11 𝑘𝑦
5552, 53, 54, 32, 42cbvsum 15046 . . . . . . . . . 10 Σ𝑘𝑦 𝑘 / 𝑥𝐵 = Σ𝑥𝑦 𝐵
5655a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 𝑘 / 𝑥𝐵 = Σ𝑥𝑦 𝐵)
5746, 56eqtrd 2856 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 ((𝑥𝑦𝐵)‘𝑘) = Σ𝑥𝑦 𝐵)
5813, 25, 573eqtrd 2860 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) = Σ𝑥𝑦 𝐵)
5958oveq1d 7165 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌) = (Σ𝑥𝑦 𝐵 + 𝑌))
6059adantr 483 . . . . 5 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑥𝐴𝐵)) < ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌)) → ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌) = (Σ𝑥𝑦 𝐵 + 𝑌))
619, 60breqtrd 5084 . . . 4 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑥𝐴𝐵)) < ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌)) → (Σ^‘(𝑥𝐴𝐵)) < (Σ𝑥𝑦 𝐵 + 𝑌))
6261ex 415 . . 3 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((Σ^‘(𝑥𝐴𝐵)) < ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌) → (Σ^‘(𝑥𝐴𝐵)) < (Σ𝑥𝑦 𝐵 + 𝑌)))
6362reximdva 3274 . 2 (𝜑 → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ𝑥𝑦 𝐵 + 𝑌)))
648, 63mpd 15 1 (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ𝑥𝑦 𝐵 + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wnf 1780  wcel 2110  wrex 3139  csb 3882  cin 3934  𝒫 cpw 4538   class class class wbr 5058  cmpt 5138  cres 5551  cfv 6349  (class class class)co 7150  Fincfn 8503  cr 10530  0cc0 10531   + caddc 10534  +∞cpnf 10666   < clt 10669  +crp 12383  [,)cico 12734  [,]cicc 12735  Σcsu 15036  Σ^csumge0 42638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-sumge0 42639
This theorem is referenced by:  sge0xaddlem2  42710  sge0gtfsumgt  42719
  Copyright terms: Public domain W3C validator